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Section 1: Abstract 

 Ray tracing is a widely used and well-studied algorithm that produces high-

quality computer generated images.  However, the algorithm requires enormous amounts 

of computation, and as a result cannot be efficiently done in real-time on commodity 

hardware.  While current graphics processing units (GPUs) use rasterization to render 

images, graphics company Nvidia has released CUDA, a freely available SDK which 

allows developers to create C programs that run on CUDA-compatible GPUs.  This 

project investigates CUDA’s processing power, parallel hardware, and memory 

management, and maps it to ray tracing in order to see how it can perform the algorithm 

in real-time.  The result is a fully interactive ray tracing system that utilizes a GPU’s 

parallel architecture.   

 

Section 2: Statement of Problem 

 One of the main goals of computer graphics is to make a computer generate 

photorealistic images from scene data.  Numerous techniques have been developed to 

accomplish this, including rasterization, ray tracing, and radiosity.  All three of these 

techniques have advantages and disadvantages.  For example, current commercial 

hardware can do rasterization very quickly and efficiently, but ray tracing usually 

produces higher-quality images, albeit much more slowly.  In fact, for the most part, ray 

tracing cannot be done in real-time on common computers.   This project aims to fix this 

by developing a real-time ray tracer on commercial hardware. 

 

Section 3: Analysis 
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 Ray tracing is a fairly well-studied process.  It generates an image by spawning 

one or more rays per pixel into the world, testing intersection between the ray(s) and 

objects in the scene, and coloring the given pixel based on which objects are hit.  

Considering a common screen resolution is 1280x1024, one image can easily contain 

more than one million pixels.  Then, an average scene in a computer game can contain 

more than one hundred thousand triangles.  This means a naïve ray tracer could need to 

perform a trillion intersection tests in order to produce a single image.  Furthermore, an 

acceptable frame rate for games is about 60 frames per second, so a real-time ray tracer 

would need to generate an image in about 1/60th of a second.  Considering a single 

intersection test contains approximately a few dozen floating point operations, the 

amount of computation power required is quite large; even today’s fastest multi-core 

processor cannot come close to this performance. 

 Because ray tracing produces such high-quality images, attempting to do it in real 

time is not a new concept.  This field of study could also be simply called optimizing ray 

tracing, and more or less comes in two flavors: optimizing with hardware or with 

software. 

 Performing real-time ray tracing in software usually means optimizing the basic 

algorithm so fewer calculations need to be performed.  One common way to do this is to 

perform intersection tests only on those objects that are in the viewing volume of the 

camera.  This is done by using one of a number of well-defined spatial subdivision 

algorithms such as BSP or kd-trees.  Binary Space Partitioning transforms a space into a 

binary tree representation by recursively subdividing it into convex sets.  The basic 

algorithm divides the space in two until a specific condition is met.  How the scene is 
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divided depends on the application[1].  Kd-trees are a special type of BSP where the 

space is divided on the axes into rectangles or cubes[4].  Another common way to limit 

the number of intersection tests is to use bounding volume hierarchies.  Here, objects that 

are near each other in a scene are encapsulated in a simple shape – spheres and cubes are 

common choices.  Intersection tests are then performed on the bounding volume, then on 

the contained objects only if the bounding volume intersected.  Of course, bounding 

volumes can be grouped in larger bounding volumes, yielding a hierarchy[9].  It should 

be noted these optimizations are quite straightforward in static environments, but in 

scenes where the objects move the algorithms can become more challenging.  Sometimes, 

the trees or hierarchies simply need to be recalculated for each frame, so these 

representations need to be efficiently calculated as well. 

 There has been a significant amount of research in improving the problem with 

dynamic scenes.  One example is contained in a dissertation by Ingo Wald.  In it, Wald 

makes an observation that objects’ behaviors can be classified into three categories: 

static, hierarchical motion, and unstructured motion.  Static objects do not change in a 

scene, hierarchical motion divides objects into hierarchies that are transformed uniformly, 

and unstructured motion moves each vertex or triangle independently of all other 

vertices.  For static objects, the usual, highly-optimized kd-tree or BVH can be created 

one time and be used throughout the application.  When using hierarchical motion, the 

ray tracer can transform the rays instead of the objects, thus keeping a static hierarchy or 

tree.  Last, unstructured motion does require modifying the tree, but the paper proposes 

optimized algorithms to performing this restructuring.  One other note worth mentioning 
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is the ray tracer does not decide which class an object should be in; rather the client 

application tells the ray tracer how to handle each object.  

 To deal with unstructured motion, Wald notes the tree may need to be recreated 

every frame.  However, this is only necessary when the object’s triangles have changed.  

Also, it can be done only when a ray needs to be tested against the object.  Restructuring 

still takes time though, so Wald compromises structure optimality for build time.  For 

example, he relaxes the subdivision criterion for the BSP.  One way he decreases build 

time is he allows more triangles per node, which gives a shallower tree and faster build 

time.  He notes that scenes usually contain more static and hierarchical motion than 

unstructured motion, so this system is efficient in most cases.  He goes on to describe his 

top-level kd-tree which handles the scene as a whole[10]. 

 One other approach to optimizing spatial representations in ray tracing is 

proposed by Ingo Wald, Solomon Boulos, and Peter Shirley.  Here, the writers argue that 

while kd-trees have gotten more attention and have therefore become very efficient, 

BVHs are more applicable to dynamic (and interactive) scenes.  So, the writers 

implement a ray tracer that uses binary BVHs with axis-aligned bounding boxes.  The 

first half of the paper describes their BVH structure, tree traversal, and usage of packets 

for single frames.  Then, they discuss how BVHs can be used in interactive scenes.  First, 

the topology of the BVH does not need to change between frames.  Instead, the 

dimensions of the volumes can be refit to reflect transformations in the scene.  The only 

question here is how to construct the initial BVH.  For this, two options are offered.  The 

first possibility is to create the BVH from the character’s first frame in an animation, or 

its rest pose.  However, this could yield a very inefficient BVH (for example if the 
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characters has its hands behind its head in the first frame, one node might contain both its 

hands and head), so the second option is to create a BVH from a number of valid poses 

and choose the “best” one from some kind of heuristic[11].   

One hardware solution to speed up ray tracing is presented in a paper by Ulf 

Ochsenfahrt and Ralf Salomon.   This paper recognizes the fact the main factor that 

cripples a ray tracer’s speed is calculating the ray-triangle intersections, and modern 

software optimizations (regular grids, kd-trees, bounding box hierarchies, etc) cannot 

guarantee specific improvements in performance under all circumstances.   Because of 

this, the proposed implementation aims to vastly improve that specific point in the ray 

tracing pipeline.  To do this, the writers suggest a hardware design called Constant-time 

Raytracing with Embedded Memory Architecture, or CREMA.  The main idea is it will 

reduce all ray-object intersections to O(1).  This is done with a rather brute-force 

approach by having a nano processor for every primitive in the scene.  All intersection 

calculations can then be performed simultaneously, thus giving a computational 

complexity of O(1).  This is fundamentally different than the more common ray tracer in 

which pixels are separated into threads and are computed independently of each other. 

This paper describes an implementation the writers produced, albeit on a limited 

budget, that can be considered successful.  Their prototype ran at 13 frames per second 

with a resolution of 256x128.  With better hardware this performance could certainly be 

improved, but this method inherently imposes a very strict limitation on the maximum 

number of objects in a scene.  While all graphics solutions have limitations, this solution 

has well-defined limitations, which may be good or bad depending on the application[6]. 
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Sven Woop, et al. also implemented a specialized hardware solution to ray 

tracing.  Here, the authors developed an RPU (Ray Processing Unit) that resembles 

GPUs, but with extended functionality and optimized for ray tracing instead of 

rasterization.  The authors describe the unit as being flexible like CPUs, but containing 

the parallelism of a GPU.   

The design starts with a Shader Processing Unit which uses four component, 

single precision floating point or integer vectors for intersection tests and shading.  This 

SPU can switch between threads whose states are maintained in hardware.  Every 

primary ray is a separate thread, and chunks of threads are executed in SIMD mode in 

parallel by multiple SPUs.   

Another feature, and unlike modern GPUs, is their architecture supports 

conditional branching, recursion, and a hardware-maintained register stack.  This allows 

for recursively tracing rays in shaders, which certainly adds flexibility, but is probably 

not absolutely necessary.  Another interesting feature of the architecture is the inclusion 

of the TPU, or Traversal Processing Unit, which works with the SPU to traverse the 

scene’s kd-tree.  This is quite interesting, because in current graphics applications, spatial 

divisions are contained in software; there is no notion of kd-trees, etc in GPUs.  Memory 

access is also a nice feature in this architecture.  Memory can refer to on-card DRAM or 

host memory, and since different rays often access the same data, these memory requests 

are combined.  Last, this architecture is scalable to use multiple RPUs on one card, on 

multiple cards, or on multiple computers, much like the growing trend of multiple GPU 

configurations. 

 The authors implemented a simple prototype with a single RPU.  Despite its 
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relatively slow 66 MHz clock speed, it achieved impressive results.  It can run at 1-20 

frames per second (depending on scene complexity), keeping pace with multi-CPU 

solutions and specialized, less-flexible solutions [12]. 

Graphics processors have evolved quite a bit in the past few years.  One of the 

key changes has been the addition of pixel, or fragment, shaders, which allows the 

programmer to directly modify a frame pixel by pixel.  The shader is run on the GPU, so 

it can take advantage of the GPU’s parallel architecture and fast floating point operations.  

Thus, there have been several attempts at using a pixel shader to perform ray tracing.  

One paper by Timothy J. Purcell et al. discusses how this could be done.  The paper was 

written at the time when pixel shaders were first being introduced, so the authors created 

a simulator instead of actually implementing it.  

To do ray tracing on a GPU, the authors treat the hardware like a stream 

processor, which means it reads data it needs as a sequential stream.  Every element 

requires similar calculations, so the system executes a kernel on each element and places 

the result on an output stream.  Because each element is independent, they can be 

processed in parallel as much as the hardware allows. 

Using this stream model, the authors use several kernels that feed into one 

another.  The first is the eye ray generator.  It is the simplest kernel; it takes the camera 

information and creates a ray for each pixel.  The second kernel is the traverser, which 

follows each ray and calculates which voxels are intersected.  Voxels in this system are 

part of the accelerated spatial structure, so they store information about what objects are 

stored inside them.  The third kernel, the intersector, then takes this information and 

performs ray-triangle intersection tests on all triangles in said voxels.  Next, the shader 
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calculates the color resulting from each ray, using standard shading techniques.  Also, the 

shader is responsible for spawning secondary rays (shadow, reflection, refraction, etc). 

The implementation is not of particular interest for the purpose of this project, but 

the way the authors mapped traditional ray tracing to the architecture of a GPU certainly 

is [8]. 

Another paper describing how ray tracing can be done on GPUs was written by 

Carr et al.  The point of interest in this paper is how the authors do some work on the 

GPU and some on the CPU.  This is done because both processors are good at different 

things.  The GPU is very efficient at performing the same operations on many sets of 

data, while the CPU is good at recursion and handling complex data structures.  

Therefore, the CPU handles traversing the BSP and gathering clusters of rays and 

triangles to send to the GPU, and the GPU does most of the intersection tests.  One of the 

biggest obstacles is the slow communication between CPU and GPU, so obviously the 

amount, and frequency, of data transferred is minimized as much as possible. To do this, 

the authors have the CPU gather chunks of coherent rays.  If there were over a certain 

number of coherent rays they are sent to the GPU.  Otherwise, the GPU speedup isn’t 

worth the time required to send the data, so the CPU performs the intersection tests itself 

[2].   

There is another example of real-time ray tracing on a GPU on the Internet as 

well.  Here, the author creates a ray tracer in the pixel shader of an Nvidia 8800 GPU.  

The scene is very basic, with 21 spheres and 1 plane.  Furthermore, the ray tracer uses 

ray-sphere intersection instead of the standard ray-triangle intersection to reduce the 

number of ray intersection tests to 22 for the entire scene.  However, the demo runs on an 
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8800GTS with 320 MB RAM at 70 frames per second at what appears to be 800x600 

resolution with reflection.  While simplistic, this demo certainly shows a modern GPU 

can, to some extent, perform high-quality ray tracing in real-time. [3] 

 In order to create a practical real-time ray tracer, one must consider all these 

factors: spatial subdivision, dynamic scenes, and parallelization.  As far as the last 

approach (CREMA), introducing new hardware can be difficult for a number of reasons; 

primarily because consumers would much rather use the hardware they already have.  Of 

course, developing and producing specialized hardware is expensive and time consuming 

as well.  However, the basic idea of parallelizing object space instead of pixel space has 

much potential, and could be useful in other approaches. 

 

Section 4: Hypothesis 

 Rasterization is the method used in games and most 3D interactive programs.  

This is made possible with Graphics Processing Units (GPUs).  These specialized chips’ 

only task is to rasterize triangles into an image using their massively parallel architecture 

and efficient floating-point arithmetic capabilities.   Interestingly, ray tracing is slow 

primarily because of its reliance on floating-point operations, and it also lends itself 

extremely well to parallelization.  Thus, it is conceivable GPUs could perform ray tracing 

much more efficiently than general purpose processors.   

 Up until a year ago, GPUs were only capable of doing one thing: drawing 

triangles; manufacturers gave them almost no flexibility.  However, GPU manufacturer 

Nvidia changed this with its 8000 series GPUs.  Prior to this line, in order to use a GPU 

fcor general computig one had to do it in a shader language such as High-Level Shader 
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Language (HLSL).  HLSL is meant for graphics applications that allow directly 

modifying vertex and pixel data.  So, using this for other purposes was awkward and 

restricting.   

The architecture of the new GPUs now resembles a general parallel processor, 

and the drivers use it for graphics rendering.  Thus, the hardware is driven much more by 

software.  Because of this, alongside its release of the 8000 GPU line, Nvidia released a 

C compiler for its graphics processors called CUDA (Compute Unified Device 

Architecture.  This means anybody can write software that uses an Nvidia 8000 series 

GPU as a general purpose CPU [5].   

I plan to leverage this compiler and hardware to perform ray tracing in real-time.  

Because “real-time rendering” is not a well-defined term (5 frames per second at 

256x256 resolution could be called real-time), I will use three metrics to measure the 

success of my system: frame rate, screen resolution, and number of objects in a scene.  

To be called a useful real-time renderer these three must be balanced.  For example, 

rendering five objects in a scene at 100 frames per second does not constitute a usable 

graphics package.  A very successful result would run at around 60 frames per second at 

1024x768 resolution with a hundred thousand polygons, but I will be developing a 

system that maximizes all three factors as much as possible. 

 

Section 5: Synthesis 

Overview 

 My system has been written in C and C++.  Because a CPU is more efficient than 

a GPU with certain things, some of my system runs on the CPU, while the core ray 
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tracing operations runs on the GPU.  Thankfully, Nvidia’s CUDA SDK allows for easy 

cooperation with CPU and GPU.  So, the GPU portion is compiled with Nvidia’s C 

compiler and runs on an Nvidia CUDA-compatible graphics card, and the rest is written 

in C++ and compiled with Visual Studio 2005.  Also, CUDA can cooperate with 

OpenGL and DirectX.  Interestingly, because CUDA is still relatively new, it works with 

these technologies in two different, limited ways.  With DirectX, CUDA can share vertex 

buffers, and with OpenGL it can share texture buffers.  Because in my system, CUDA 

creates an image (or texture), and that texture needs to be rendered to the screen, I take 

advantage of CUDA’s OpenGL interoperability.   

Two desktop computers will be used for testing: one with an 8800 Ultra and 

another with 8800 GTS with 320 MB RAM.   

 I have mapped traditional ray tracing algorithm to CUDA.  Also, I implemented a 

bounding volume hierarchy to further optimize the system.  Figure 1 shows a high-level 

flowchart of my system: 
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Figure 1: The pipeline of my system. 

The scene geometry is initially partitioned into a Bounding Volume Hierarchy by 

the CPU.  The CPU then uses this hierarchy to efficiently task the GPU to ray trace the 

scene.  After the frame is complete, the CPU draws the frame using OpenGL.  The CPU 

also checks for user input and updates the scene data (lights, camera, etc) for the next 

frame.  While it may appear the CPU is doing most of the work, the most 

computationally expensive part is being done on the GPU.   

 

Bounding Volume Hierarchy 

 After looking into several different techniques for spatial subdivisions, I chose to 

create a bounding volume hierarchy, because it seemed to be the most flexible when 

applied to dynamic objects.  For the bounding volume I chose spheres, for reasons 

discussed later in this document. 
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 Even though the hierarchy is created and maintained entirely on the host (CPU), it 

is sent to and used by CUDA, so I needed to consider this when designing and creating 

my system.  Specific details on these considerations are also discussed later. 

Importing geometry 

 A spatial subdivision is not much good without geometry, so my system allows 

importing models from files in the FBX format, which is a widely used format supported 

by Maya, 3D Studio Max, Blender, and other modeling packages.  To facilitate this, I 

used the Autodesk FBX SDK, which provides support for reading and writing FBX files. 

 FBX is a very robust format, and so is the SDK.  It includes support for numerous 

types of objects such as lights, bones, animation, NURBS, materials, cameras, etc.  

However, for the purpose of this project, I was only interested in polygonal geometry, so 

I only used features of the SDK that directly pertained to the information I wanted.   

My system does not export anything to any FBX file.  Therefore, when the system 

initializes, it creates an FBXManager and loads all relevant data.  Upon completion, the 

FBXManager is destroyed and the SDK is not used again.  An overview of the classes 

and structures that handle importing is described below: 

 

ImportedModel 

 This class contains all relevant data from an FBX file.  Since a single file can hold 

an entire scene, only one is currently created in my system.  However, multiple files 

could be used with minimal amount of change to my system.   

After the FBX manager has been initialized and the file opened, ImportedModel 

goes through the scene hierarchy.  In FBX files, everything (meshes, NURBS, cameras, 
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bones, etc) is contained in a hierarchy.  Since I am only interested in the scene’s 

geometry, this caused an issue with dealing with all the extra information.  Instead of 

storing everything, I chose to extract mesh information and discard the rest.  I also chose 

to discard the tree information for several reasons.  The main reason was while a tree 

consisting entirely of meshes might be useful, in FBX files a mesh might be a child of a 

bone, a bone might be a child of any other type of object, etc.  Thus, trying to extract a 

tree consisting only of meshes would be cumbersome.  Also, every child has a global 

transformation matrix and a transformation matrix relative to its parent.  Skipping parents 

would have invalidated a child’s relative transformation matrix, so I simply always use 

global transformation matrices.  This simplification is illustrated below: 

 

Figure 2: Example of how an FBX file is stored in my system. 

ImportedModel goes through the scene hierarchy and looks for mesh objects.  

Whenever such an object is encountered, it creates a new Geometry object and gives it 

the current node.  ImportedModel resumes its search at the last node’s sibling. 
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Geometry 

 As mentioned above, ImportedModel gives Geometry a node that is a mesh.  

From there, Geometry recursively finds all offspring (children, grandchildren, etc) that 

are meshes and stores them as Mesh objects. 

 

Mesh 

 Mesh holds a single node’s vertex data.  It does this by containing a series of 

Polygon objects.  Polygons contain a number of Vertex objects, and a Vertex contains 

data such as x, y, z coordinates, normals, colors, etc.  Mesh also contains global 

transformation matrices.   

The diagram below shows an example of this structure. 

 

Figure 3: Examples of how a scene is stored in my class structure. 
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Constructing the Bounding Volume Hierarchy 

Structure BoundingVolume contains data for the hierarchy.  It contains its center 

position, radius, and transformation matrix.  If this volume’s children are leaf nodes it 

contains an array of Polygon objects; otherwise, it contains two volumes contained within 

it (yielding a binary tree).  A BoundingVolume does not contain both child volumes and 

polygons.  

ImportedModel constructs and contains a bounding volume hierarchy for each 

Mesh it contains.  There are no higher-level volumes, because as these objects move, 

scale, or rotate, the structure of the hierarchy would need to change or become inefficient.  

Instead, as a single mesh is transformed, the hierarchy containing it uses the same 

transformation matrix.  Thus, no hierarchies ever require restructuring.   

So, ImportedModel loops over all Mesh objects, creating one volume for each.  If 

the number of vertices contained in one volume exceeds a certain threshold, and if the 

object can be split up, the vertices are divided as evenly as possible, and a child volume is 

created for both groups. 

Creating the bounding volume is an interesting problem.  My first impulse was to 

find the average of all points, use that as the center, and use the distance to the farthest 

vertex as the radius.  In this example, this approach would be acceptable: 
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However, this example yields an inefficient bounding volume: 

 

Figure 4: Inefficient bounding volume. 

Therefore, I created a very simple, yet efficient way of creating a tight volume.  

To begin, I create a bounding box by finding the maximum x, y, and z coordinates and 

the minimum x, y, and z coordinates.  Then, the line between these two points is the 
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sphere’s diameter, and the midpoint is the center of the sphere.  With the same vertices 

this method yields the following bounding volume: 

 

Figure 4: A more efficient bounding volume. 

As noted before, transforming objects can be done by modifying each Mesh’s 

transformation matrix.  BoundingVolume contains a pointer to its Mesh’s matrix, so the 

bounding volume hierarchy is always up to date.   

One last note about bounding volumes in my system: there are two primitives that 

can be natively ray traced in my implementation, spheres and polygons.  Incidentally, 

because I chose my bounding volumes to be spheres, my hierarchy contains data 

necessary to describe any combination of polygons and spheres.  If there is a top-level 

volume that contains no children and no polygons, my ray tracer renders the volume 

itself. 

Since it would have been cumbersome to export and import spheres to/from FBX 

files, I created my own, very simple, file format.  My system reads this text file, and the 

file can tell the system to load an FBX file, as well as draw any number of spheres or 

polygons. 
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Considerations for CUDA 

 First, CUDA kernels must be written in C.  This is not to say, however, the entire 

system must be written in C.  Furthermore, the FBX SDK is written in C++.  So, in my 

system, most of the code that runs on the host (the computer’s main CPU) is C++ code.  

This includes ImportedScene, Geomety, and Mesh. 

 As previously note, the host handles the creating and updating of the hierarchy 

and geometry (as well as other things, such as camera control), while the GPU only 

handles the drawing of the scene.  The GPU cannot directly access CPU memory, so the 

host has to explicitly send all required data to the GPU.  To simplify this, 

BoundingVolume is a structure that contains all data required to draw a given scene.  

This means I am able to use C++ data types and constructs for Geometry, Mesh, etc, but 

BoundingVolume and its members are strictly C-type structs.  The upshot of this is 

BoundingVolume contains pointers to matrices and children.  This means I need to 

recursively write this data to GPU memory.  To do this, I recurse down to the deepest leaf 

first, copy that node to the GPU memory, use that pointer for its parent, copy the parent, 

and so on. 

 Another consideration is while the GPU performs all transformation operations 

(matrix multiplication, translation/rotation/scale encoding and decoding) in current 

graphics applications, there are no mechanisms to do these operations in CUDA.  

Unfortunately, even though DirectX would have allowed easy access to the card’s matrix 

operations, I had to use OpenGL for its abiltity to share textures with CUDA.  Therefore, 

two options were available for transforming objects.  First, all matrix operations could be 
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done on the CPU, leading to losses in overall performance.  The other option was to have 

the ray tracer kernel transform all objects as it encountered them.  Obviously, this would 

have also greatly decreased performance.  In light of this, and due to the fact that my 

Graduate work is going to focus on rendering performance, the objects in my scene are, 

for the most part, static.  The mechanisms are in place to transform objects, but most of 

them are not used at this time.  There is one exception to this, however.  Models that are 

imported from an FBX files have transformation matrices associated with them.  Simply 

ignoring these would yield an incorrect scene, so there is a preprocessing step that occurs.  

After the scene is imported, but before the bounding volume hierarchy is created, each 

object’s transformation matrix is applied to all its vertices.  These new positions simply 

replace the old ones. 

The Ray Tracer Kernel 

Overview 

 CUDA programs consist of kernels that are compiled specifically for the GPU.  In 

my system, when the host is ready to draw another frame, it sends all required data to a 

function that spawns the GPU threads and starts up the kernel.  This data includes a 

pointer to an OpenGL texture buffer, dimensions of the window, camera information, the 

scene’s light position, a pointer to the bounding volume hierarchy, and some extra 

information about the hierarchy.  The GPU cannot access any host memory and vice-

versa, so all data the CPU sends is either by-value or pointers to data already in GPU 

memory.  While in changing scenes the CPU would send the GPU the certain scene data 

every frame in order to reflect any changes, I ultimately made my system upload the 
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scene geometry data once since objects in my scene do not move.  I do, however send 

things like camera position/orientation, etc. every frame. 

 The spawning function then forwards this data to the kernel, while also 

determining how to divide the work on the GPU.  This is done on every CUDA program 

by splitting the work into grids, and splitting grids into threads.  My implementation uses 

ray packets (each thread computes a block of pixels), so the spawning function figures 

out how many grids and threads to spawn based on customizable parameters (packet size, 

screen size, etc).  I use ray packets to decrease the number of threads that attempt to 

access the same memory location at one time (memory issues are discussed in further 

detail later in this document.  Of course, this does not solve the memory access issues, 

but it does seem to help.  The packet size is also easily configurable to allow 

experimenting to see how different sizes affect the performance of different scenes.  On 

average, 4x4 packets seem to work the best. 

 Threads in a CUDA kernel always have access to which grid they belong to and 

where they are in the grid, so they can easily decide which pixel(s) they should compute.  

The ray tracer algorithm can then be performed on each thread. 

Recursion 

There is no recursion in CUDA.  This posed an interesting problem, as the basic 

ray tracing algorithm is inherently recursive.  Moreover, my bounding volume hierarchy 

is a tree, which is also usually traversed recursively.  Creating the hierarchy wasn’t a 

problem since it is created on the host, and thus could be done recursively, but an 

iterative solution was required for on CUDA.  Interestingly, the solutions for both 

traversing the hierarchy and recursive ray tracing were very similar. 
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In both solutions I maintain an array of current objects and an array of “next” 

objects.  For the hierarchy these objects are volumes, and for the ray tracing these objects 

are rays.  So, the “current” hierarchy and ray arrays are initialized to contain the top-level 

volumes and the single ray spawned from the camera, respectively.  Then, in every 

iteration, the “next” arrays are filled with child volumes whose parents were intersected 

and any necessary secondary rays.  After each iteration the “next” array is moved to the 

“current” one and is emptied.  For the hierarchy, iteration stops when the “current” array 

is empty.  When ray tracing, the iterations stop when there are no more “next” rays or the 

number of iterations has reached a specified limit.   

This iterative approach works well on CUDA, except for one other drawback.  

CUDA cannot dynamically allocate memory from within the kernel, so the arrays 

described above must be of fixed size.  This means a maximum size had to be chosen and 

the arrays are always given this size.  Of course, this means excessive memory could be 

allocate which will decrease performance, or not enough memory could be allocated 

which will cause the kernel to crash.  This maximum size could be modified to allow for 

larger scenes, however. 

Ray tracer operations 

 GPUs are still primarily used for rendering graphics, so they have many vector 

operations (dot product, cross-product, normalization, etc) implemented in hardware.  

CUDA provides native 2-, 3-, and 4D vector types, but the necessary vector operations 

are not available, which probably could have improved performance, since I wrote them 

all in software.   
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 Aside from vector operations, the other main features of my kernel are the ray-

sphere and ray-polygon intersection tests.  The ray-sphere intersection test is the same as 

any other implementation, but the ray-polygon test is not as common.  To begin, the 

polygon in question is “projected” to a 2D axis-aligned plane.  This projection is not done 

by rotating the polygon; rather, the dominant component in the normal is simply 

discarded.  So, if a polygon has a normal of (.1, .1, .9), the polygon is projected on the 

xy-plane by ignoring each vertex’s z-component.  Next, the polygon and intersection 

point are translated such that the intersection point is on the origin.  For each edge on the 

polygon, it is tested whether it intersects a given positive axis.  If the number of these 

intersections is even, the point lies outside the polygon; otherwise it is inside [7].  This 

algorithm has some advantages over others, such as it does not require any trigonometric 

operations and it works on both convex and non-convex polygons. 

 

Figure 5: Process of determining if a point is inside a given polygon. 

Memory Access 



 26 

 The 8000 GPUs have extremely powerful and parallel architectures.  However, to 

be as powerful as they are, they have to be somewhat specialized in the types of 

applications they are efficient at (otherwise they could be used as a CPU!).  One of the 

main things CUDA kernels need to have to effectively use the full capabilities of the 

architecture is coalesced memory.  The basic idea of coalesced memory is every global 

memory access should be coalesced into one contiguous request, and every thread should 

request different memory locations.  For example, if an array is being processed, thread 0 

should read element 0, thread 1 should access element 1, and so on. This concept is best 

depicted in the CUDA Programming Guide [5]: 

 



 27 

Figure 6: Left: Coalesced memory access.  Right: Non-sequential non-coalesced 

memory access. 

Unfortunately, ray tracing relies on random access memory, because each thread 

needs to access all scene data a number of times throughout the algorithm.  This certainly 

degrades a ray tracer’s performance when done on CUDA. 

Branching 

 Another limiting factor in CUDA is branching.  If two threads diverge, they are 

executed serially instead of in parallel, which obviously causes a significant decrease in 

performance.  Again, there is much branching in ray tracing, because of different object 

intersections, spawning reflection/refraction rays, shadows, etc.  This is a fundamental 

characteristic of the ray tracing algorithm, so this is another reason it performs less than 

ideally on CUDA. 

Section 6: Results 

Each benchmark was run on two machines: 

Processor AMD ATHLON 64 X2 
5200 @ 2.6 GHz 

Intel Core 2 Duo E6600 @ 
2.4 GHz 

System RAM 4 GB 2 GB 

GPU Nvidia 8800 GTS Nvidia 8800 GTX 

Graphics RAM 320 MB 768 MB 

 

In Addition, CUDA allows the kernel to run in “emulation” mode, which means it runs 

on the CPU, and the GPU is not utilized.  This allows for a good measurement of the 

speed-up obtained from the GPU.  So, tests were conducted in both emulation mode and 

“normal” mode.  All objects in the following tests are either reflective or transparent.  
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Using smaller resolutions yield linear speedups, so I have used the same resolution on all 

the following tests. 

Test 1: 
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Test 2:  
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Test 3: 

 

Test 3 (1 Triangle, 2 Spheres)
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Test 4: 

 

Test 4 (35 Triangles, 0 Spheres)
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Test 5: 

 

Test 5 (0 Triangles, 36 Spheres)
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Test 6: 

 

Test 6 (2406 Triangles, 0 Spheres)
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 The relative performance results are not surprising.  The 8800 GTX has more 

memory, higher clock speeds, etc. than the GTS, so it should achieve higher frame rates.  

Likewise, GPUs’ architectures are much more parallel than CPUs, so they should 



 34 

perform much better.  Last, Intel’s Core 2 Duo line generally performs faster than Athlon 

64s.   

 One may be confused as to why the scene with two spheres ran so much faster 

than the one with two triangles when the performance of 35 polygons was better than 36 

spheres.  This is because my system always inserts all polygons into bounding volumes.  

Therefore, two triangles actually require a maximum of four intersection tests: two 

spheres and two polygons. 

 

Section 6: Conclusions 

 Nvidia’s 8800 graphics cards are extremely powerful, and CUDA allows 

programmers to develop software that uses these highly parallel architectures for general 

computing.  The potential performance of floating-point arithmetic on these cards is truly 

impressive.  However, not every problem is a good candidate for being solved with 

CUDA.  The first and most important requirement is the problem should be massively 

parallelizable.  Second, the solution to the problem should follow certain memory 

patterns.  And last, branching should minimalized as much as possible. 

 Ray tracing requires millions of floating-point operations per second, and is also 

extremely parallelizable.  On the other hand, it requires much random access memory and 

branching.  Thus, ray tracing on CUDA can be done in real-time, but only on a very small 

scale.  My system can ray trace a scene with only a handful of objects before its frame 

rate drops to undesirable levels.  Once again, I believe the 8800 GPUs have enough 

computing power for ray tracing, but the memory accesses and branching are the limiting 

factors. 
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 That being said, an interesting fact has been observed.  On the demo programs 

that ship with CUDA, the GPU shows 16-300 times the performance as CPUs running 

the same programs in emulation mode.  My system shows the GPU being about 70-100 

times faster than a CPU, which is close to the gain CUDA gives to other applications, 

even though CUDA is not perfectly suited for ray tracing.  This suggests another possible 

application to my system: rendering farms.  Instead of using CUDA for real-time ray 

tracing it could be used to simply do it faster than current systems.  Rendering a frame in 

1/80th the time could be extremely valuable for film studios that rely on large rendering 

farms to produce their images. 

 

Section 7: Future Work 

 There are numerous modifications or additions that could be made to this project.  

First, it would be interesting to investigate how other primitives such as cylinders, cubes, 

cones, torii, etc. perform when compared to spheres and polygons.  Furthermore, NURBS 

can represent objects that are just as complex as those made of polygons, and since they 

would require fewer memory accesses, it would be extremely interesting to extend my 

system to accept any arbitrary NURBS or similarly-defined object.  Another possible 

path would be to investigate how other spatial subdivisions (kd-trees, bsp-trees, etc) 

perform, as well as how other kinds of volumes for a bounding volume hierarchy affect 

performance.  Of course, future releases of CUDA may include native matrix or vector 

operations, so utilizing these functions may yield performance gains.  Last, seeing how 

multiple GPUs in SLI improve performance could be beneficial as well. 
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 Aside from improving the performance of the system, some other features would 

also be quite interesting.  Because the hardware is designed for graphics after all, and 

because CUDA cooperates with OpenGl and DirectX, using the pixel/fragment shaders 

for post-processing is a possibility as well.  Effects like tone reproduction could be 

implemented in a shader after CUDA finishes tracing the scene. 

 

Appendix A: Installing and configuring necessary software for project 

on Windows XP and Visual Studio 2005: 

Nvidia CUDA: 

Download and install three files from 

http://www.nvidia.com/object/cuda_get.html#windows:  

• 169.21_forceware_winxp_32bit_english_whql.exe 

• NVIDIA_CUDA_Toolkit_1.1_x86.exe 

• NVIDIA_CUDA_SDK_1.1_x86.exe 

Autodesk FBX SDK: 

Download fbx200611_1_fbxsdk_win_enu.exe from 

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6839916  

Running my Project: 

Note: These steps assume the above installations were performed with the default 

options.  If not, the paths for the FBX SDK and CUDA may require changing in Visual 

Studio. 
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• Copy my (unzipped) project directory to C:\Program Files\NVIDIA 

Corporation\NVIDIA CUDA SDK\projects\raytracer, such that raytracer.sln is 

immediately contained in this directory. 

• Open ratracer.sln in MS Visual Studio 2005. 

• Build solution. 

• If everything compiles and links, run project.  Otherwise, refer to 

“troubleshooting” below. 

Controls: 

• Arrow keys move the camera in the X and Z direction 

• I, K Adjusts camera pitch 

• O, P Adjusts camera yaw 

• W, S, A, D move the light source in the X and Z direction 

•  F prints the current frame rate to the console 

• 1-9 displays respective levels of bounding volume hierarchy.  0 displays the 

bottom level. 

 

Troubleshooting 

• >LINK : fatal error LNK1181: cannot open input file  'fbxsdk_mt2005d.lib'  

o You may need to include the FBX “lib” directory in Visual Studio. 

� In VS, go to Tools -->options 

� Under Projects and Settings, click VC++ directories 

� Select Library Files from the “show directories for” drop-down 
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� Add C:\Program Files\Autodesk\FBX\FbxSdk\2006.11.1\lib to the 

list. 

• >C:\Program 

Files\Autodesk\FBX\FbxSdk\2006.11.1\include\kfcurve /kfcurvenode.h(1056) : fatal 

error C1083: Cannot open include file: 'kfcurve/kfc urvenodeinhouse.h': No such 

file or directory  

o Double-click the error.   This should open the .h file with the error.  

Comment out line 1056. 

o Rebuilding will give 329 warnings, but the program will run fine.  

Unfortunately, no other reliable fix has been found that does not yield 

these warnings. 

For more accurate performance statistics, disable Vertical Sync: 

• Open Nvidia Control Panel 

• Click “Manage 3D Settings” 

• In the “Global Settings” tab, select “Force off” for the “Vertical Sync” 

feature 
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