Real-time Ray Tracing using CUDA
Michael Allgyer
4/12/2008

Master’s Project Report

Signatures:

Advisor (Joe Geigel):

Reader (Warren Carithers):

Graduate Advisor (Hans-Peter Bischof):

Table of Contents:

Section 1. Abstract

Section 2: Statement of Problem

Section 3: Analysis

Section 4: Hypothesis

Section 5: Synthesis

Section 6: Results

Section 7: Conclusions

Section 8: Future Work

Appendix A: Compiling and running the program

References

11

12

27

34

35

36

39

Section 1: Abstract

Ray tracing is a widely used and well-studied atgm that produces high-
guality computer generated images. However, therihm requires enormous amounts
of computation, and as a result cannot be effibiatdne in real-time on commodity
hardware. While current graphics processing (@RUs) use rasterization to render
images, graphics company Nvidia has released Clregely available SDK which
allows developers to create C programs that ru6ldDA-compatible GPUs. This
project investigates CUDA'’s processing power, paralardware, and memory
management, and maps it to ray tracing in ordee®how it can perform the algorithm
in real-time. The result is a fully interactiveyri@acing system that utilizes a GPU’s

parallel architecture.

Section 2: Statement of Problem

One of the main goals of computer graphics is aera computer generate
photorealistic images from scene data. Numerathmntques have been developed to
accomplish this, including rasterization, ray tragiand radiosity. All three of these
technigues have advantages and disadvantageex&ople, current commercial
hardware can do rasterization very quickly anccedfitly, but ray tracing usually
produces higher-quality images, albeit much mas/igl. In fact, for the most part, ray
tracing cannot be done in real-time on common cderpu This project aims to fix this

by developing a real-time ray tracer on commetugatware.

Section 3: Analysis

Ray tracing is a fairly well-studied processgénerates an image by spawning
one or more rays per pixel into the world, tesfimgrsection between the ray(s) and
objects in the scene, and coloring the given diesled on which objects are hit.
Considering a common screen resolution is 1280x1024 image can easily contain
more than one million pixels. Then, an averag@sde a computer game can contain
more than one hundred thousand triangles. Thisisn@aaive ray tracer could need to
perform a trillion intersection tests in order t@guce a single image. Furthermore, an
acceptable frame rate for games is about 60 fragesecond, so a real-time ray tracer
would need to generate an image in about 4@ second. Considering a single
intersection test contains approximately a few ddimating point operations, the
amount of computation power required is quite lagyen today’s fastest multi-core
processor cannot come close to this performance.

Because ray tracing produces such high-qualitgesaattempting to do it in real
time is not a new concept. This field of studyldaaiso be simply called optimizing ray
tracing, and more or less comes in two flavorsinoigtng with hardware or with
software.

Performing real-time ray tracing in software uspateans optimizing the basic
algorithm so fewer calculations need to be perfarm®ne common way to do this is to
perform intersection tests only on those objects &ine in the viewing volume of the
camera. This is done by using one of a numberatifadefined spatial subdivision
algorithms such as BSP or kd-trees. Binary SpacgtiBning transforms a space into a
binary tree representation by recursively subdngdt into convex sets. The basic

algorithm divides the space in two until a speafimdition is met. How the scene is

divided depends on the application[1]. Kd-treesaspecial type of BSP where the
space is divided on the axes into rectangles oesjdh Another common way to limit
the number of intersection tests is to use boundahgme hierarchies. Here, objects that
are near each other in a scene are encapsulaesinple shape — spheres and cubes are
common choices. Intersection tests are then paddron the bounding volume, then on
the contained objects only if the bounding volumierisected. Of course, bounding
volumes can be grouped in larger bounding voluyietding a hierarchy[9]. It should

be noted these optimizations are quite straightiodvin static environments, but in
scenes where the objects move the algorithms caomieemore challenging. Sometimes,
the trees or hierarchies simply need to be recatledlfor each frame, so these
representations need to be efficiently calculateaell.

There has been a significant amount of researchpnoving the problem with
dynamic scenes. One example is contained in antds®n by Ingo Wald. In it, Wald
makes an observation that objects’ behaviors carldssified into three categories:
static, hierarchical motion, and unstructured nmati&tatic objects do not change in a
scene, hierarchical motion divides objects intgdrighies that are transformed uniformly,
and unstructured motion moves each vertex or tigaimgependently of all other
vertices. For static objects, the usual, highlyirozed kd-tree or BVH can be created
one time and be used throughout the applicatioheMusing hierarchical motion, the
ray tracer can transform the rays instead of theotdy thus keeping a static hierarchy or
tree. Last, unstructured motion does require nyadifthe tree, but the paper proposes

optimized algorithms to performing this restruatgri One other note worth mentioning

is the ray tracer does not decide which class gcbbhould be in; rather the client
application tells the ray tracer how to handle ealgject.

To deal with unstructured motion, Wald notes tiee imay need to be recreated
every frame. However, this is only necessary wherobject’s triangles have changed.
Also, it can be done only when a ray needs to $iedeagainst the object. Restructuring
still takes time though, so Wald compromises stngcoptimality for build time. For
example, he relaxes the subdivision criterion ier BSP. One way he decreases build
time is he allows more triangles per node, whialegia shallower tree and faster build
time. He notes that scenes usually contain mateestnd hierarchical motion than
unstructured motion, so this system is efficienmiost cases. He goes on to describe his
top-level kd-tree which handles the scene as aejh].

One other approach to optimizing spatial repregents in ray tracing is
proposed by Ingo Wald, Solomon Boulos, and Peteteyh Here, the writers argue that
while kd-trees have gotten more attention and hlaee=fore become very efficient,
BVHSs are more applicable to dynamic (and interajtacenes. So, the writers
implement a ray tracer that uses binary BVHs wiis-aligned bounding boxes. The
first half of the paper describes their BVH struefuree traversal, and usage of packets
for single frames. Then, they discuss how BVHsloanised in interactive scenes. First,
the topology of the BVH does not need to changevden frames. Instead, the
dimensions of the volumes can be refit to reflembsformations in the scene. The only
guestion here is how to construct the initial BVFbr this, two options are offered. The
first possibility is to create the BVH from the cheter’s first frame in an animation, or

its rest pose. However, this could yield a vesfficient BVH (for example if the

characters has its hands behind its head in thieffame, one node might contain both its
hands and head), so the second option is to caedB¥H from a number of valid poses
and choose the “best” one from some kind of haafist].

One hardware solution to speed up ray tracingdsepted in a paper by Ulf
Ochsenfahrt and Ralf Salomon. This paper recegrtize fact the main factor that
cripples a ray tracer’s speed is calculating tlyetriangle intersections, and modern
software optimizations (regular grids, kd-treesuiting box hierarchies, etc) cannot
guarantee specific improvements in performance ualtleircumstances. Because of
this, the proposed implementation aims to vastlgroxe that specific point in the ray
tracing pipeline. To do this, the writers suggesardware design called Constant-time
Raytracing with Embedded Memory Architecture, orEBRA. The main idea is it will
reduce all ray-object intersections to O(1). Tikidone with a rather brute-force
approach by having a nano processor for every pviin the scene. All intersection
calculations can then be performed simultaneotislis giving a computational
complexity of O(1). This is fundamentally diffetehan the more common ray tracer in
which pixels are separated into threads and arguted independently of each other.

This paper describes an implementation the wrgggsduced, albeit on a limited
budget, that can be considered successful. Thatiotgpe ran at 13 frames per second
with a resolution of 256x128. With better hardwtnis performance could certainly be
improved, but this method inherently imposes a > limitation on the maximum
number of objects in a scene. While all graphatat®ons have limitations, this solution

has well-defined limitations, which may be goodad depending on the application[6].

Sven Woop, et al. also implemented a specializedWse solution to ray
tracing. Here, the authors developed an RPU (RageBsing Unit) that resembles
GPUs, but with extended functionality and optimizedray tracing instead of
rasterization. The authors describe the unit asgglféexible like CPUs, but containing
the parallelism of a GPU.

The design starts with a Shader Processing Unittwiises four component,
single precision floating point or integer vecttwsintersection tests and shading. This
SPU can switch between threads whose states antamaid in hardware. Every
primary ray is a separate thread, and chunks e&tly are executed in SIMD mode in
parallel by multiple SPUs.

Another feature, and unlike modern GPUs, is thahitecture supports
conditional branching, recursion, and a hardwaretamed register stack. This allows
for recursively tracing rays in shaders, which @iety adds flexibility, but is probably
not absolutely necessary. Another interestingufeadf the architecture is the inclusion
of the TPU, or Traversal Processing Unit, which kgowith the SPU to traverse the
scene’s kd-tree. This is quite interesting, beeansurrent graphics applications, spatial
divisions are contained in software; there is ntiomoof kd-trees, etc in GPUs. Memory
access is also a nice feature in this architectifemory can refer to on-card DRAM or
host memory, and since different rays often acttessame data, these memory requests
are combined. Last, this architecture is scalablese multiple RPUs on one card, on
multiple cards, or on multiple computers, much like growing trend of multiple GPU
configurations.

The authors implemented a simple prototype wiingle RPU. Despite its

relatively slow 66 MHz clock speed, it achieved megsive results. It can run at 1-20
frames per second (depending on scene complekégping pace with multi-CPU
solutions and specialized, less-flexible solutifiryy.

Graphics processors have evolved quite a bit ippése few years. One of the
key changes has been the addition of pixel, omfiexg, shaders, which allows the
programmer to directly modify a frame pixel by dix@he shader is run on the GPU, so
it can take advantage of the GPU'’s parallel archire and fast floating point operations.
Thus, there have been several attempts at usinggbspader to perform ray tracing.
One paper by Timothy J. Purcell et al. discussesthes could be done. The paper was
written at the time when pixel shaders were fieshh introduced, so the authors created
a simulator instead of actually implementing it.

To do ray tracing on a GPU, the authors treat Hrdware like a stream
processor, which means it reads data it needseglential stream. Every element
requires similar calculations, so the system exacatkernel on each element and places
the result on an output stream. Because each etasni@dependent, they can be
processed in parallel as much as the hardware sllow

Using this stream model, the authors use severaklethat feed into one
another. The first is the eye ray generators the simplest kernel; it takes the camera
information and creates a ray for each pixel. 3&eond kernel is the traverser, which
follows each ray and calculates which voxels atergected. Voxels in this system are
part of the accelerated spatial structure, so shee information about what objects are
stored inside them. The third kernel, the inteisrethen takes this information and

performs ray-triangle intersection tests on adlrtgles in said voxels. Next, the shader

10

calculates the color resulting from each ray, usitagidard shading techniques. Also, the
shader is responsible for spawning secondary shadpw, reflection, refraction, etc).

The implementation is not of particular interesttfte purpose of this project, but
the way the authors mapped traditional ray tratinipe architecture of a GPU certainly
is [8].

Another paper describing how ray tracing can beedamGPUs was written by
Carr et al. The point of interest in this papédnasv the authors do some work on the
GPU and some on the CPU. This is done becausepbmtessors are good at different
things. The GPU is very efficient at performing tame operations on many sets of
data, while the CPU is good at recursion and hagdlomplex data structures.
Therefore, the CPU handles traversing the BSP atitegng clusters of rays and
triangles to send to the GPU, and the GPU does afidsé intersection tests. One of the
biggest obstacles is the slow communication betvied and GPU, so obviously the
amount, and frequency, of data transferred is ma@thas much as possible. To do this,
the authors have the CPU gather chunks of coheagst If there were over a certain
number of coherent rays they are sent to the GPtbherwise, the GPU speedup isn’'t
worth the time required to send the data, so thg g&tforms the intersection tests itself
[2].

There is another example of real-time ray tracin@@PU on the Internet as
well. Here, the author creates a ray tracer imptkel shader of an Nvidia 8800 GPU.
The scene is very basic, with 21 spheres and Epl&nrthermore, the ray tracer uses
ray-sphere intersection instead of the standardriaygle intersection to reduce the

number of ray intersection tests to 22 for therergcene. However, the demo runs on an

11

8800GTS with 320 MB RAM at 70 frames per secondlzt appears to be 800x600
resolution with reflection. While simplistic, thiemo certainly shows a modern GPU
can, to some extent, perform high-quality ray mgadn real-time. [3]

In order to create a practical real-time ray traoae must consider all these
factors: spatial subdivision, dynamic scenes, ardlfelization. As far as the last
approach (CREMA), introducing new hardware caniffecdlt for a number of reasons;
primarily because consumers would much ratherheséardware they already have. Of
course, developing and producing specialized hamelvgaexpensive and time consuming
as well. However, the basic idea of parallelizifgect space instead of pixel space has

much potential, and could be useful in other apghea.

Section 4: Hypothesis

Rasterization is the method used in games and 3istteractive programs.
This is made possible with Graphics ProcessingdJ@PUs). These specialized chips’
only task is to rasterize triangles into an imag@@ their massively parallel architecture
and efficient floating-point arithmetic capabildie Interestingly, ray tracing is slow
primarily because of its reliance on floating-papeerations, and it also lends itself
extremely well to parallelization. Thus, it is e@ivable GPUs could perform ray tracing
much more efficiently than general purpose proassso

Up until a year ago, GPUs were only capable ofgane thing: drawing
triangles; manufacturers gave them almost no flktyib However, GPU manufacturer
Nvidia changed this with its 8000 series GPUs oo this line, in order to use a GPU

fcor general computig one had to do it in a shéalgguage such as High-Level Shader

12

Language (HLSL). HLSL is meant for graphics apgtiiens that allow directly
modifying vertex and pixel data. So, using thisdther purposes was awkward and
restricting.

The architecture of the new GPUs now resemblesiargkeparallel processor,
and the drivers use it for graphics rendering. sTltibe hardware is driven much more by
software. Because of this, alongside its rele&$eeo8000 GPU line, Nvidia released a
C compiler for its graphics processors called CU@AmMpute Unified Device
Architecture. This means anybody can write sofenthat uses an Nvidia 8000 series
GPU as a general purpose CPU [5].

| plan to leverage this compiler and hardware tdqoen ray tracing in real-time.
Because “real-time rendering” is not a well-defitedn (5 frames per second at
256x256 resolution could be called real-time), Il wse three metrics to measure the
success of my system: frame rate, screen resoj@@hnumber of objects in a scene.
To be called a useful real-time renderer theseethrest be balanced. For example,
rendering five objects in a scene at 100 frames@eond does not constitute a usable
graphics package. A very successful result woutdat around 60 frames per second at
1024x768 resolution with a hundred thousand polggbnt | will be developing a

system that maximizes all three factors as mugboasible.

Section 5: Synthesis

Overview
My system has been written in C and C++. BecauSeU is more efficient than

a GPU with certain things, some of my system runthe CPU, while the core ray

13

tracing operations runs on the GPU. Thankfullyidiw/s CUDA SDK allows for easy
cooperation with CPU and GPU. So, the GPU poiisaompiled with Nvidia’s C
compiler and runs on an Nvidia CUDA-compatible dpiap card, and the rest is written
in C++ and compiled with Visual Studio 2005. Al§JDA can cooperate with
OpenGL and DirectX. Interestingly, because CUDAtil relatively new, it works with
these technologies in two different, limited waygith DirectX, CUDA can share vertex
buffers, and with OpenGL it can share texture bsffeBecause in my system, CUDA
creates an image (or texture), and that texturdsieebe rendered to the screen, | take
advantage of CUDA’s OpenGL interoperability.

Two desktop computers will be used for testing: wite an 8800 Ultra and
another with 8800 GTS with 320 MB RAM.

| have mapped traditional ray tracing algorithn©dDA. Also, | implemented a
bounding volume hierarchy to further optimize tlgstem. Figure 1 shows a high-level

flowchart of my system:

14

Scene Importer CPU

iTriangIes. Sphares, atc

Spatial Partiticner

i Hisrarchy of Primitives

/,l Scens Cnntainerl

BWvH, Gamara, Light, atc GPU
¥

Ray Tracer

Updated Scsr\ l Finished Imaga CPU
Input Handler

Figure 1: The pipeline of my system.

The scene geometry is initially partitioned intB@unding Volume Hierarchy by
the CPU. The CPU then uses this hierarchy toiefftty task the GPU to ray trace the
scene. After the frame is complete, the CPU dtédrame using OpenGL. The CPU
also checks for user input and updates the sceagldgts, camera, etc) for the next
frame. While it may appear the CPU is doing mdshe work, the most

computationally expensive part is being done orGRéJ.

Bounding Volume Hierar chy

After looking into several different techniques $patial subdivisions, | chose to
create a bounding volume hierarchy, because it sé¢mbe the most flexible when
applied to dynamic objects. For the bounding va@urmhose spheres, for reasons

discussed later in this document.

15

Even though the hierarchy is created and mainda@éméirely on the host (CPU), it
is sent to and used by CUDA, so | needed to con#iiiewhen designing and creating
my system. Specific details on these considerat@wa also discussed later.

Importing geometry

A spatial subdivision is not much good without gery, so my system allows
importing models from files in the FBX format, whics a widely used format supported
by Maya, 3D Studio Max, Blender, and other modepagkages. To facilitate this, |
used the Autodesk FBX SDK, which provides suppartréading and writing FBX files.

FBX is a very robust format, and so is the SDKin¢ludes support for numerous
types of objects such as lights, bones, animah®/RBS, materials, cameras, etc.
However, for the purpose of this project, | wasydnterested in polygonal geometry, so
| only used features of the SDK that directly peed to the information | wanted.

My system does not export anything to any FBX fildherefore, when the system
initializes, it creates an FBXManager and loadsedvant data. Upon completion, the
FBXManager is destroyed and the SDK is not usethagen overview of the classes

and structures that handle importing is descriletdva

ImportedModel

This class contains all relevant data from an FBX Since a single file can hold
an entire scene, only one is currently createdyrsystem. However, multiple files
could be used with minimal amount of change to gsesm.

After the FBX manager has been initialized andfileeopened, ImportedModel

goes through the scene hierarchy. In FBX filegrghing (meshes, NURBS, cameras,

16

bones, etc) is contained in a hierarchy. Singe baly interested in the scene’s
geometry, this caused an issue with dealing witthalextra information. Instead of
storing everything, | chose to extract mesh infdromaand discard the rest. | also chose
to discard the tree information for several reasortse main reason was while a tree
consisting entirely of meshes might be useful,BiXFiles a mesh might be a child of a
bone, a bone might be a child of any other typelpéct, etc. Thus, trying to extract a
tree consisting only of meshes would be cumbersoitso, every child has a global
transformation matrix and a transformation matebative to its parent. Skipping parents
would have invalidated a child’s relative transfatian matrix, so | simply always use

global transformation matrices. This simplificatiis illustrated below:

FBX Scene Hierarchy My Scene
Root Car

— Car Wheels

L \Wheels)‘ Human

—— Camera

Skeleton
_I—Human

Figure 2: Example of how an FBX file is stored in my system
ImportedModel goes through the scene hierarchyl@id for mesh objects.
Whenever such an object is encountered, it createsv Geometry object and gives it

the current node. ImportedModel resumes its seartie last node’s sibling.

17

Geometry

As mentioned above, ImportedModel gives Geometrgde that is a mesh.

From there, Geometry recursively finds all offsgriichildren, grandchildren, etc) that

are meshes and stores them as Mesh objects.

Mesh

Mesh holds a single node’s vertex data. It dbisslty containing a series of
Polygon objects. Polygons contain a number of&feabjects, and a Vertex contains

data such as x, y, z coordinates, normals, cobtes, Mesh also contains global

transformation matrices.

The diagram below shows an example of this stractur

FBX Hierarchy ImportadMadel
Imparadviods)
Car Boay

Coor
Whesl 1
Wheel 2

Whael 3 Gaomalny

Whael 4

Parson

Vartax

Mash

Figure 3: Examples of how a scene is stored in my classtsiteic

18

Constructing the Bounding Volume Hierarchy

Structure BoundingVolume contains data for thedrigry. It contains its center
position, radius, and transformation matrix. Istiiolume’s children are leaf nodes it
contains an array of Polygon objects; otherwisegittains two volumes contained within
it (yielding a binary tree). A BoundingVolume dasst contain both child volumes and
polygons.

ImportedModel constructs and contains a boundirigrae hierarchy for each
Mesh it contains. There are no higher-level volsnbecause as these objects move,
scale, or rotate, the structure of the hierarchyldraeed to change or become inefficient.
Instead, as a single mesh is transformed, therblgraontaining it uses the same
transformation matrix. Thus, no hierarchies eeguire restructuring.

So, ImportedModel loops over all Mesh objects, tingeone volume for each. If
the number of vertices contained in one volume easa certain threshold, and if the
object can be split up, the vertices are divideevasly as possible, and a child volume is
created for both groups.

Creating the bounding volume is an interesting [eob My first impulse was to
find the average of all points, use that as théeceand use the distance to the farthest

vertex as the radius. In this example, this apgragould be acceptable:

19

However, this example yields an inefficient bourgvolume:

Figure4: Inefficient bounding volume.
Therefore, | created a very simple, yet efficieatyvof creating a tight volume.
To begin, | create a bounding box by finding theximaim x, y, and z coordinates and

the minimum X, y, and z coordinates. Then, the between these two points is the

20

sphere’s diameter, and the midpoint is the cerftédreosphere. With the same vertices

this method yields the following bounding volume:

Figure4: A more efficient bounding volume.

As noted before, transforming objects can be dgnmaddifying each Mesh’s
transformation matrix. BoundingVolume containsoénper to its Mesh’s matrix, so the
bounding volume hierarchy is always up to date.

One last note about bounding volumes in my systkare are two primitives that
can be natively ray traced in my implementatiomesps and polygons. Incidentally,
because | chose my bounding volumes to be sphasekierarchy contains data
necessary to describe any combination of polygodssaheres. If there is a top-level
volume that contains no children and no polygongray tracer renders the volume
itself.

Since it would have been cumbersome to export @pait spheres to/from FBX
files, | created my own, very simple, file formatly system reads this text file, and the
file can tell the system to load an FBX file, adlvas draw any number of spheres or

polygons.

21

Considerations for CUDA

First, CUDA kernels must be written in C. Thisi®t to say, however, the entire
system must be written in C. Furthermore, the FEDXK is written in C++. So, in my
system, most of the code that runs on the hostc@thguter’'s main CPU) is C++ code.
This includes ImportedScene, Geomety, and Mesh.

As previously note, the host handles the creamjupdating of the hierarchy
and geometry (as well as other things, such asreacoatrol), while the GPU only
handles the drawing of the scene. The GPU canraaitly access CPU memory, so the
host has to explicitly send all required data ®@PU. To simplify this,
BoundingVolume is a structure that contains aladatjuired to draw a given scene.
This means | am able to use C++ data types androotsfor Geometry, Mesh, etc, but
BoundingVolume and its members are strictly C-tgfyacts. The upshot of this is
BoundingVolume contains pointers to matrices anttlicdn. This means | need to
recursively write this data to GPU memory. To ldis,tl recurse down to the deepest leaf
first, copy that node to the GPU memory, use tlattpr for its parent, copy the parent,
and so on.

Another consideration is while the GPU perfornigrahsformation operations
(matrix multiplication, translation/rotation/scaacoding and decoding) in current
graphics applications, there are no mechanisme tha&ke operations in CUDA.
Unfortunately, even though DirectX would have aldaleasy access to the card’s matrix
operations, | had to use OpenGL for its abiltityst@are textures with CUDA. Therefore,

two options were available for transforming objed&rst, all matrix operations could be

22

done on the CPU, leading to losses in overall perémce. The other option was to have
the ray tracer kernel transform all objects asid@goeintered them. Obviously, this would
have also greatly decreased performance. Indifytitis, and due to the fact that my
Graduate work is going to focus on rendering pentorce, the objects in my scene are,
for the most part, static. The mechanisms ardaoepto transform objects, but most of
them are not used at this time. There is one éxuef this, however. Models that are
imported from an FBX files have transformation ntas associated with them. Simply
ignoring these would yield an incorrect scene h&od is a preprocessing step that occurs.
After the scene is imported, but before the bougd@imlume hierarchy is created, each
object’s transformation matrix is applied to adl vtertices. These new positions simply
replace the old ones.
The Ray Tracer Kerne
Overview

CUDA programs consist of kernels that are compsigecifically for the GPU. In
my system, when the host is ready to draw anothend, it sends all required data to a
function that spawns the GPU threads and startkaigernel. This data includes a
pointer to an OpenGL texture buffer, dimensionthefwindow, camera information, the
scene’s light position, a pointer to the boundinume hierarchy, and some extra
information about the hierarchy. The GPU cannotas any host memory and vice-
versa, so all data the CPU sends is either by-v@peinters to data already in GPU
memory. While in changing scenes the CPU would $ke GPU the certain scene data

every frame in order to reflect any changes, madtiely made my system upload the

23

scene geometry data once since objects in my sitenet move. | do, however send
things like camera position/orientation, etc. evieayne.

The spawning function then forwards this dateheokernel, while also
determining how to divide the work on the GPU. sTisidone on every CUDA program
by splitting the work into grids, and splitting dsi into threads. My implementation uses
ray packets (each thread computes a block of pi@dsthe spawning function figures
out how many grids and threads to spawn based storoizable parameters (packet size,
screen size, etc). | use ray packets to decrbaseumber of threads that attempt to
access the same memory location at one time (meissugs are discussed in further
detail later in this document. Of course, thisgioet solve the memory access issues,
but it does seem to help. The packet size isedsdy configurable to allow
experimenting to see how different sizes affectgédormance of different scenes. On
average, 4x4 packets seem to work the best.

Threads in a CUDA kernel always have access tatwiiid they belong to and
where they are in the grid, so they can easilyd#ewihich pixel(s) they should compute.
The ray tracer algorithm can then be performedamh ¢hread.

Recursion

There is no recursion in CUDA. This posed an ggéng problem, as the basic
ray tracing algorithm is inherently recursive. Mover, my bounding volume hierarchy
is a tree, which is also usually traversed receigivCreating the hierarchy wasn't a
problem since it is created on the host, and tbufdde done recursively, but an
iterative solution was required for on CUDA. Imstingly, the solutions for both

traversing the hierarchy and recursive ray tragege very similar.

24

In both solutions | maintain an array of currenjecks and an array of “next”
objects. For the hierarchy these objects are vedyrand for the ray tracing these objects
are rays. So, the “current” hierarchy and rayyariae initialized to contain the top-level
volumes and the single ray spawned from the camespectively. Then, in every
iteration, the “next” arrays are filled with childlumes whose parents were intersected
and any necessary secondary rays. After eacliderhe “next” array is moved to the
“current” one and is emptied. For the hierarchgration stops when the “current” array
is empty. When ray tracing, the iterations stogmwthere are no more “next” rays or the
number of iterations has reached a specified limit.

This iterative approach works well on CUDA, exclptone other drawback.
CUDA cannot dynamically allocate memory from withine kernel, so the arrays
described above must be of fixed size. This maamaximum size had to be chosen and
the arrays are always given this size. Of coulse means excessive memory could be
allocate which will decrease performance, or naugin memory could be allocated
which will cause the kernel to crash. This maxinsize could be modified to allow for
larger scenes, however.

Ray tracer operations

GPUs are still primarily used for rendering grajshiso they have many vector
operations (dot product, cross-product, normalrgtetc) implemented in hardware.
CUDA provides native 2-, 3-, and 4D vector typad, the necessary vector operations
are not available, which probably could have impperformance, since | wrote them

all in software.

25

Aside from vector operations, the other main fesgwf my kernel are the ray-
sphere and ray-polygon intersection tests. Thespéere intersection test is the same as
any other implementation, but the ray-polygon igstot as common. To begin, the
polygon in question is “projected” to a 2D axisgaked plane. This projection is not done
by rotating the polygon; rather, the dominant congrt in the normal is simply
discarded. So, if a polygon has a normal of {,1,9), the polygon is projected on the
xy-plane by ignoring each vertex’s z-componentxtNene polygon and intersection
point are translated such that the intersectiontpsion the origin. For each edge on the
polygon, it is tested whether it intersects a gigenitive axis. If the number of these
intersections is even, the point lies outside thiggon; otherwise it is inside [7]. This
algorithm has some advantages over others, sutll@ss not require any trigonometric

operations and it works on both convex and non-errpolygons.

ll : ll
ll‘ l“‘ E ‘]l
3 v| ;
N N
\\/ ~V
Point is outside polygon Point is inside polygon

Figure5: Process of determining if a point is inside aegiypolygon.

Memory Access

26

The 8000 GPUs have extremely powerful and paratighitectures. However, to
be as powerful as they are, they have to be sontesplaialized in the types of
applications they are efficient at (otherwise theyld be used as a CPU!). One of the
main things CUDA kernels need to have to effecyivede the full capabilities of the
architecture is coalesced memory. The basic ifleaadlesced memory is every global
memory access should be coalesced into one consgeguest, and every thread should
request different memory locations. For examglaniarray is being processed, thread 0
should read element 0, thread 1 should access eldmand so on. This concept is best

depicted in the CUDA Programming Guide [5]:

S |
Thread 0. - Address 138 Address 128
Thread 1 Address 132 mmm
Thread 2 .mm. ddress 136 I
Thiad 3 _I - Address 140 Address 140
Thread 4 . Address 144 L Address 144
Thread 5 Address 146 .-Md:muu
Thread & v Address 152 I dd 152
Thread 7 v Address 156 Address 156
Thread 8 - Address 160 deress 160
Thread 8 - Address 164 Mduum
Thread 10 , Address 168 . A 155
Thresd 11 Address 172 | Address 172
Thresd 12 . Mddrass 176 mm
Thresd 13 - Address 130 | Mdrm.‘l,lﬂ
Theend 14 - Adddress 184 I.mm
Thresd 15 b Address 188 . | Address 188

27

Figure 6: Left: Coalesced memory access. Right: Non-setplerdn-coalesced
memory access.

Unfortunately, ray tracing relies on random accasemory, because each thread
needs to access all scene data a number of timegtiout the algorithm. This certainly
degrades a ray tracer’s performance when done d»ACU
Branching

Another limiting factor in CUDA is branching. tfvo threads diverge, they are
executed serially instead of in parallel, which iologly causes a significant decrease in
performance. Again, there is much branching intraging, because of different object
intersections, spawning reflection/refraction ragfg®adows, etc. This is a fundamental
characteristic of the ray tracing algorithm, saftisianother reason it performs less than
ideally on CUDA.

Section 6: Results

Each benchmark was run on two machines:

Pr ocessor AMD ATHLON 64 X2 Intel Core 2 Duo E6600 @
5200 @ 2.6 GHz 2.4 GHz

System RAM 4 GB 2 GB

GPU Nvidia 8800 GTS Nvidia 8800 GTX

GraphicsRAM 320 MB 768 MB

In Addition, CUDA allows the kernel to run in “enation” mode, which means it runs
on the CPU, and the GPU is not utilized. Thisvaidor a good measurement of the
speed-up obtained from the GPU. So, tests weréuobded in both emulation mode and

“normal” mode. All objects in the following tesase either reflective or transparent.

28

Using smaller resolutions yield linear speedupd,lsve used the same resolution on all
the following tests.

Test 1:

S e e ey race TS O

Test 1 (2 Triangles, O Spheres)

4 Steps

3 Steps O Core 2 Duo
0O Athlon 64 X2
m 8800 GTX

2 Steps m 8800 GTS

1 Step

Max Reflection/Refraction lterations

0 5 10 15 20 25 30 35 40
Frames Per Second

29

Test 2:

S e e ey race TS O

Test 2 (0 Triangles, 2 Spheres)

4 Steps

3 Steps O Core 2 Duo
O Athlon 64 X2
m 8800 GTX

2 Steps m 8800 GTS

1 Step

Max Reflection/Refraction Iterations

0 20 40 60 80 100

Frames Per Second

30

Test 3:

W ieal Tyme Ray dracenlsing GLUDA

Test 3 (1 Triangle, 2 Spheres)

4 Steps

3 Steps O Core 2 Duo
O Athlon 64 X2
m 8800 GTX

2 Steps m 8800 GTS

1 Step

Max Reflection/Refraction Iterations

0 5 10 15 20 25 30 35

Frames Per Second

31

W el TimelRay T aces sz CUDA

Test 4 (35 Triangles, 0 Spheres)

4 Steps

3 Steps O Core 2 Duo
O Athlon 64 X2
m 8800 GTX

2 Steps m 8800 GTS

1 Step

Max Reflection/Refraction Iterations

0 2 4 6 8 10 12 14

Frames Per Second

32

Test 5:

I Rea Sme Ry yacerising U

Test 5 (0 Triangles, 36 Spheres)

4 Steps

3 Steps O Core 2 Duo
O Athlon 64 X2
m 8800 GTX

2 Steps m 8800 GTS

1 Step

Max Reflection/Refraction Iterations

0 1 2 3 4 5 6 7

Frames Per Second

33

T el Pl g raear Usiig 0D

Test 6 (2406 Triangles, 0 Spheres)

4 Steps

3 Steps O Core 2 Duo
O Athlon 64 X2
m 8800 GTX

2 Steps 0 8800 GTS

1 Step

Max Reflection/Refraction Iterations

0 0.05 0.1 0.15 0.2 0.25 0.3

Frames Per Second

The relative performance results are not surggisifhe 8800 GTX has more
memory, higher clock speeds, etc. than the GT8,smuld achieve higher frame rates.

Likewise, GPUs’ architectures are much more pdrdiEn CPUSs, so they should

34

perform much better. Last, Intel’'s Core 2 Duo Ilgemerally performs faster than Athlon
64s.

One may be confused as to why the scene with plverss ran so much faster
than the one with two triangles when the perforneanfc35 polygons was better than 36
spheres. This is because my system always iraepslygons into bounding volumes.
Therefore, two triangles actually require a maximafrfour intersection tests: two

spheres and two polygons.

Section 6: Conclusions

Nvidia’s 8800 graphics cards are extremely powegntl CUDA allows
programmers to develop software that uses thesdytparallel architectures for general
computing. The potential performance of floatiragap arithmetic on these cards is truly
impressive. However, not every problem is a gaatti@ate for being solved with
CUDA. The first and most important requiremerthis problem should be massively
parallelizable. Second, the solution to the pnobétould follow certain memory
patterns. And last, branching should minimalizedrauch as possible.

Ray tracing requires millions of floating-pointexations per second, and is also
extremely parallelizable. On the other hand,guiees much random access memory and
branching. Thus, ray tracing on CUDA can be doneal-time, but only on a very small
scale. My system can ray trace a scene with ohlgnalful of objects before its frame
rate drops to undesirable levels. Once againljé\methe 8800 GPUs have enough
computing power for ray tracing, but the memoryesses and branching are the limiting

factors.

35

That being said, an interesting fact has beenrebde On the demo programs
that ship with CUDA, the GPU shows 16-300 timespghgormance as CPUs running
the same programs in emulation mode. My systewslhioe GPU being about 70-100
times faster than a CPU, which is close to the GalMDA gives to other applications,
even though CUDA is not perfectly suited for regcing. This suggests another possible
application to my system: rendering farms. Instefagsing CUDA for real-time ray
tracing it could be used to simply do it fastentlcarrent systems. Rendering a frame in
1/80" the time could be extremely valuable for film sasithat rely on large rendering

farms to produce their images.

Section 7: Future Work

There are numerous modifications or additions tbatd be made to this project.
First, it would be interesting to investigate hother primitives such as cylinders, cubes,
cones, torii, etc. perform when compared to sphanespolygons. Furthermore, NURBS
can represent objects that are just as compldéxoae tmade of polygons, and since they
would require fewer memory accesses, it would lireeely interesting to extend my
system to accept any arbitrary NURBS or similaréfitled object. Another possible
path would be to investigate how other spatial susidns kd-trees, bsp-trees, etc)
perform, as well as how other kinds of volumesadrounding volume hierarchy affect
performance. Of course, future releases of CUDA melude native matrix or vector
operations, so utilizing these functions may ygdformance gains. Last, seeing how

multiple GPUs in SLI improve performance could leaéficial as well.

36

Aside from improving the performance of the systsome other features would
also be quite interesting. Because the hardwatesgned for graphics after all, and
because CUDA cooperates with OpenGI and Directiguhe pixel/fragment shaders
for post-processing is a possibility as well. Eftelike tone reproduction could be

implemented in a shader after CUDA finishes tra¢imgscene.

Appendix A: Installing and configuring necessary software for project

on Windows XP and Visual Studio 2005:

Nvidia CUDA:
Download and install three files from

http://www.nvidia.com/object/cuda get.html#windows

* 169.21 forceware_winxp_32bit_english_whqgl.exe
 NVIDIA_CUDA Toolkit_1.1 x86.exe
* NVIDIA_CUDA_SDK 1.1 x86.exe

Autodesk FBX SDK:

Download fbx200611 1 fbxsdk win_enu.exe from

http://usa.autodesk.com/adsk/serviet/index?site 331 2&id=6839916

Running my Project:
Note: These steps assume the above installatiorespeeformed with the default
options. If not, the paths for the FBX SDK and GQUMay require changing in Visual

Studio.

37

* Copy my (unzipped) project directory to C:\Prograies\NVIDIA
Corporation\NVIDIA CUDA SDK\projects\raytracer, duthat raytracer.sin is
immediately contained in this directory.

* Open ratracer.sln in MS Visual Studio 2005.

* Build solution.

» If everything compiles and links, run project. &thise, refer to
“troubleshooting” below.

Controls:

» Arrow keys move the camera in the X and Z direction

* |, K Adjusts camera pitch

* O, P Adjusts camera yaw

« W, S, A, D move the light source in the X and Zedtion

* F prints the current frame rate to the console

» 1-9 displays respective levels of bounding volunegaichy. O displays the

bottom level.

Troubleshooting

® >LINK: fatal error LNK1181: cannot open input file 'foxsdk_mt2005d.lib’"

0 You may need to include the FBX “lib” directory Wisual Studio.
* In VS, go to Tools -->options
»= Under Projects and Settings, click VC++ directories

= Select Library Files from the “show directories”fdrop-down

38

» Add C:\Program Files\Autodesk\FBX\FbxSdk\2006. 1lib1o the

list.
® >C:\Program
Files\Autodesk\FBX\FbxSdk\2006.11.1\include\kfcurve /kfcurvenode.h(1056) : fatal
error C1083: Cannot open include file: 'kfcurve/kfc urvenodeinhouse.h': No such

file or directory

o0 Double-click the error. This should open theiléith the error.
Comment out line 1056.

o0 Rebuilding will give 329 warnings, but the prografi run fine.
Unfortunately, no other reliable fix has been fotinat does not yield
these warnings.

For more accurate performance statistics, disabl@idal Sync:

* Open Nvidia Control Panel

» Click “Manage 3D Settings”

* Inthe “Global Settings” tab, select “Force offtfthe “Vertical Sync”

feature

39

References

[1]Binary Space Partitioning October 2007. Retrieved 20 October 2007 from

site: http://en.wikipedia.org/wiki/BSP tree

[2] Carr, N. A., Hall, J. D., and Hart, J. C. 2002e ray engine. IRroceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference onl@capgHardware
(Saarbrucken, Germany, September 01 - 02, 2008GRAPH/EUROGRAPHICS
Conference On Graphics Hardware. Eurographics Aasoie, Aire-la-Ville,

Switzerland, 37-46.

[3] Hardware RayTracing Demo for IrrSpintz — nVidiad8326 May 2007
Retrieved 21 October 2007, from site: http://si@@gpft.com/modules/wmpdownloads/

[4]Kd-tree.17 October 2007. Retrieved 20 October 2007 from sit

http://en.wikipedia.org/wiki/Kd-tree

[5] Nvidia. NVIDIA CUDA Complete Unified Device. &frsion 1.1.
Programming Guide. 29 November 2007.

[6]Ochsenfahrt, UIf; Salomon, Ralf, "CREMA: A PdehHardware Raytracing
Machine,"Circuits and Systems, 2007. ISCAS 2007. IEEE latemmal Symposium on
vol., no., pp.769-772, 27-30 May 2007.

[7] Owen, ScottRay — Polygon Intersectio.June 1999. Retrieved 14 April
2008 from site:

http://www.siggraph.org/education/materials/Hype@i/raytrace/raypolygon intersecti

on.htm
[8] Purcell, T. J., Buck, I., Mark, W. R., and Hahan, P. 2002. Ray tracing on

programmable graphics hardware Piroceedings of the 29th Annual Conference on

40

Computer Graphics and interactive Techniq(@an Antonio, Texas, July 23 - 26, 2002).
SIGGRAPH '02. ACM, New York, NY, 703-712. DOI=

http://doi.acm.org/10.1145/566570.566640

[9]1Scene Graph8 September 2007. Retrieved 20 October 2007 fiten s

http://en.wikipedia.org/wiki/Bounding volume hiechies

[10]Wald, I. 2005. Handling dynamic scenesAlBM SIGGRAPH 2005 Courses
(Los Angeles, California, July 31 - August 04, 2RQb Fujii, Ed. SIGGRAPH '05. ACM

Press, New York, NY, 14. DOIlhkttp://doi.acm.org/10.1145/1198555.1198753

[11]Wald, I., Boulos, S., and Shirley, P. 2007. Raging deformable scenes
using dynamic bounding volume hierarchi@€&M Trans. Graph26, 1 (Jan. 2007), 6.

DOI= http://doi.acm.org/10.1145/1189762.1206075

[12] Woop, Sven, Schmittler, Jorg, and Slusalftilipp. “RPU: A
Programmable Ray Processing Unit for Realtime Raging,” Proceedings of ACM

SIGGRAPH 2005. July 2005. DOt#tp://www.saarcor.de/

