Michael Allgyer
10/2/2007

Master’s Project Pre-proposal

Ray tracing is a well-studied process of producing photo-realistic images. Its theory is not overly complex, but because it is computationally intensive, real-time ray tracing on a large scale using desktop computers is not yet a reality.

GPU company Nvidia has recently released it’s newest line of desktop GPUs, the 8000 series. With the new line, it has also released a C compiler that allows using the graphics processor for general computing. This offers a new solution to real-time ray tracing which is favorable over using CPUs for two reasons. First, nearly all computation in ray-tracing is floating point arithmetic, for which GPUs are much better equipped. Second, GPUs have a highly parallel architecture which is capable of running many more concurrent threads then a general-purpose CPU. Parallelism can be used in ray tracing in two ways. The most common way is to have each thread calculate a block of pixels. While this is perhaps the more straightforward method, [1] states the GPU’s limited amount of shared memory severely hinders performance using this approach and limits scene complexity. The other approach, proposed by [2], is to parallelize the object space. This means each thread will be responsible for performing intersection tests on its group of objects. While [1] implemented a real-time ray tracer using CUDA with less than favorable results, to my knowledge nobody has attempted it while parallelizing object space.

I intend to develop a real-time ray tracer that runs on an Nvidia 8000 series card. More specifically, I will be investigating parallelizing object space and seeing how it maps to the 8800. To do this, I will need to learn Nvidia’s C compiler (CUDA), and I will need to implement current ray tracing spatial optimizations, such as kd-trees or b-trees. The resulting project will be in the form of an API.

My goal of this project is not only to create a real-time ray tracer, but to also investigate limitations on the finished system. This will involve looking at three main metrics that will affect performance: frame rate, screen resolution, and number of objects in a scene.
References
[1] Real-Time Ray Tracing with NVIDIA CUDA GPGPU and Intel Quad-Core. Retrieved 19 October 2007, from Eric Rollins site: http://eric_rollins.home.mindspring.com/ray/cuda.html
[2] Ochsenfahrt, Ulf; Salomon, Ralf, "CREMA: A Parallel Hardware Raytracing Machine," Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on , vol., no., pp.769-772, 27-30 May 2007
