

Real-time Ray Tracing using CUDA

Michael Allgyer

4/12/2008

Master’s Project Report

Signatures:

Advisor (Joe Geigel): ___

Reader (Warren Carithers): ___

Graduate Advisor (Hans-Peter Bischof): _________________________________

 2

Table of Contents:

Section 1: Abstract 3

Section 2: Statement of Problem 3

Section 3: Analysis 3

Section 4: Hypothesis 11

Section 5: Synthesis 12

Section 6: Results 27

Section 7: Conclusions 34

Section 8: Future Work 35

Appendix A: Compiling and running the program 36

References 39

 3

Section 1: Abstract

 Ray tracing is a widely used and well-studied algorithm that produces high-

quality computer generated images. However, the algorithm requires enormous amounts

of computation, and as a result cannot be efficiently done in real-time on commodity

hardware. While current graphics processing units (GPUs) use rasterization to render

images, graphics company Nvidia has released CUDA, a freely available SDK which

allows developers to create C programs that run on CUDA-compatible GPUs. This

project investigates CUDA’s processing power, parallel hardware, and memory

management, and maps it to ray tracing in order to see how it can perform the algorithm

in real-time. The result is a fully interactive ray tracing system that utilizes a GPU’s

parallel architecture.

Section 2: Statement of Problem

 One of the main goals of computer graphics is to make a computer generate

photorealistic images from scene data. Numerous techniques have been developed to

accomplish this, including rasterization, ray tracing, and radiosity. All three of these

techniques have advantages and disadvantages. For example, current commercial

hardware can do rasterization very quickly and efficiently, but ray tracing usually

produces higher-quality images, albeit much more slowly. In fact, for the most part, ray

tracing cannot be done in real-time on common computers. This project aims to fix this

by developing a real-time ray tracer on commercial hardware.

Section 3: Analysis

 4

 Ray tracing is a fairly well-studied process. It generates an image by spawning

one or more rays per pixel into the world, testing intersection between the ray(s) and

objects in the scene, and coloring the given pixel based on which objects are hit.

Considering a common screen resolution is 1280x1024, one image can easily contain

more than one million pixels. Then, an average scene in a computer game can contain

more than one hundred thousand triangles. This means a naïve ray tracer could need to

perform a trillion intersection tests in order to produce a single image. Furthermore, an

acceptable frame rate for games is about 60 frames per second, so a real-time ray tracer

would need to generate an image in about 1/60th of a second. Considering a single

intersection test contains approximately a few dozen floating point operations, the

amount of computation power required is quite large; even today’s fastest multi-core

processor cannot come close to this performance.

 Because ray tracing produces such high-quality images, attempting to do it in real

time is not a new concept. This field of study could also be simply called optimizing ray

tracing, and more or less comes in two flavors: optimizing with hardware or with

software.

 Performing real-time ray tracing in software usually means optimizing the basic

algorithm so fewer calculations need to be performed. One common way to do this is to

perform intersection tests only on those objects that are in the viewing volume of the

camera. This is done by using one of a number of well-defined spatial subdivision

algorithms such as BSP or kd-trees. Binary Space Partitioning transforms a space into a

binary tree representation by recursively subdividing it into convex sets. The basic

algorithm divides the space in two until a specific condition is met. How the scene is

 5

divided depends on the application[1]. Kd-trees are a special type of BSP where the

space is divided on the axes into rectangles or cubes[4]. Another common way to limit

the number of intersection tests is to use bounding volume hierarchies. Here, objects that

are near each other in a scene are encapsulated in a simple shape – spheres and cubes are

common choices. Intersection tests are then performed on the bounding volume, then on

the contained objects only if the bounding volume intersected. Of course, bounding

volumes can be grouped in larger bounding volumes, yielding a hierarchy[9]. It should

be noted these optimizations are quite straightforward in static environments, but in

scenes where the objects move the algorithms can become more challenging. Sometimes,

the trees or hierarchies simply need to be recalculated for each frame, so these

representations need to be efficiently calculated as well.

 There has been a significant amount of research in improving the problem with

dynamic scenes. One example is contained in a dissertation by Ingo Wald. In it, Wald

makes an observation that objects’ behaviors can be classified into three categories:

static, hierarchical motion, and unstructured motion. Static objects do not change in a

scene, hierarchical motion divides objects into hierarchies that are transformed uniformly,

and unstructured motion moves each vertex or triangle independently of all other

vertices. For static objects, the usual, highly-optimized kd-tree or BVH can be created

one time and be used throughout the application. When using hierarchical motion, the

ray tracer can transform the rays instead of the objects, thus keeping a static hierarchy or

tree. Last, unstructured motion does require modifying the tree, but the paper proposes

optimized algorithms to performing this restructuring. One other note worth mentioning

 6

is the ray tracer does not decide which class an object should be in; rather the client

application tells the ray tracer how to handle each object.

 To deal with unstructured motion, Wald notes the tree may need to be recreated

every frame. However, this is only necessary when the object’s triangles have changed.

Also, it can be done only when a ray needs to be tested against the object. Restructuring

still takes time though, so Wald compromises structure optimality for build time. For

example, he relaxes the subdivision criterion for the BSP. One way he decreases build

time is he allows more triangles per node, which gives a shallower tree and faster build

time. He notes that scenes usually contain more static and hierarchical motion than

unstructured motion, so this system is efficient in most cases. He goes on to describe his

top-level kd-tree which handles the scene as a whole[10].

 One other approach to optimizing spatial representations in ray tracing is

proposed by Ingo Wald, Solomon Boulos, and Peter Shirley. Here, the writers argue that

while kd-trees have gotten more attention and have therefore become very efficient,

BVHs are more applicable to dynamic (and interactive) scenes. So, the writers

implement a ray tracer that uses binary BVHs with axis-aligned bounding boxes. The

first half of the paper describes their BVH structure, tree traversal, and usage of packets

for single frames. Then, they discuss how BVHs can be used in interactive scenes. First,

the topology of the BVH does not need to change between frames. Instead, the

dimensions of the volumes can be refit to reflect transformations in the scene. The only

question here is how to construct the initial BVH. For this, two options are offered. The

first possibility is to create the BVH from the character’s first frame in an animation, or

its rest pose. However, this could yield a very inefficient BVH (for example if the

 7

characters has its hands behind its head in the first frame, one node might contain both its

hands and head), so the second option is to create a BVH from a number of valid poses

and choose the “best” one from some kind of heuristic[11].

One hardware solution to speed up ray tracing is presented in a paper by Ulf

Ochsenfahrt and Ralf Salomon. This paper recognizes the fact the main factor that

cripples a ray tracer’s speed is calculating the ray-triangle intersections, and modern

software optimizations (regular grids, kd-trees, bounding box hierarchies, etc) cannot

guarantee specific improvements in performance under all circumstances. Because of

this, the proposed implementation aims to vastly improve that specific point in the ray

tracing pipeline. To do this, the writers suggest a hardware design called Constant-time

Raytracing with Embedded Memory Architecture, or CREMA. The main idea is it will

reduce all ray-object intersections to O(1). This is done with a rather brute-force

approach by having a nano processor for every primitive in the scene. All intersection

calculations can then be performed simultaneously, thus giving a computational

complexity of O(1). This is fundamentally different than the more common ray tracer in

which pixels are separated into threads and are computed independently of each other.

This paper describes an implementation the writers produced, albeit on a limited

budget, that can be considered successful. Their prototype ran at 13 frames per second

with a resolution of 256x128. With better hardware this performance could certainly be

improved, but this method inherently imposes a very strict limitation on the maximum

number of objects in a scene. While all graphics solutions have limitations, this solution

has well-defined limitations, which may be good or bad depending on the application[6].

 8

Sven Woop, et al. also implemented a specialized hardware solution to ray

tracing. Here, the authors developed an RPU (Ray Processing Unit) that resembles

GPUs, but with extended functionality and optimized for ray tracing instead of

rasterization. The authors describe the unit as being flexible like CPUs, but containing

the parallelism of a GPU.

The design starts with a Shader Processing Unit which uses four component,

single precision floating point or integer vectors for intersection tests and shading. This

SPU can switch between threads whose states are maintained in hardware. Every

primary ray is a separate thread, and chunks of threads are executed in SIMD mode in

parallel by multiple SPUs.

Another feature, and unlike modern GPUs, is their architecture supports

conditional branching, recursion, and a hardware-maintained register stack. This allows

for recursively tracing rays in shaders, which certainly adds flexibility, but is probably

not absolutely necessary. Another interesting feature of the architecture is the inclusion

of the TPU, or Traversal Processing Unit, which works with the SPU to traverse the

scene’s kd-tree. This is quite interesting, because in current graphics applications, spatial

divisions are contained in software; there is no notion of kd-trees, etc in GPUs. Memory

access is also a nice feature in this architecture. Memory can refer to on-card DRAM or

host memory, and since different rays often access the same data, these memory requests

are combined. Last, this architecture is scalable to use multiple RPUs on one card, on

multiple cards, or on multiple computers, much like the growing trend of multiple GPU

configurations.

 The authors implemented a simple prototype with a single RPU. Despite its

 9

relatively slow 66 MHz clock speed, it achieved impressive results. It can run at 1-20

frames per second (depending on scene complexity), keeping pace with multi-CPU

solutions and specialized, less-flexible solutions [12].

Graphics processors have evolved quite a bit in the past few years. One of the

key changes has been the addition of pixel, or fragment, shaders, which allows the

programmer to directly modify a frame pixel by pixel. The shader is run on the GPU, so

it can take advantage of the GPU’s parallel architecture and fast floating point operations.

Thus, there have been several attempts at using a pixel shader to perform ray tracing.

One paper by Timothy J. Purcell et al. discusses how this could be done. The paper was

written at the time when pixel shaders were first being introduced, so the authors created

a simulator instead of actually implementing it.

To do ray tracing on a GPU, the authors treat the hardware like a stream

processor, which means it reads data it needs as a sequential stream. Every element

requires similar calculations, so the system executes a kernel on each element and places

the result on an output stream. Because each element is independent, they can be

processed in parallel as much as the hardware allows.

Using this stream model, the authors use several kernels that feed into one

another. The first is the eye ray generator. It is the simplest kernel; it takes the camera

information and creates a ray for each pixel. The second kernel is the traverser, which

follows each ray and calculates which voxels are intersected. Voxels in this system are

part of the accelerated spatial structure, so they store information about what objects are

stored inside them. The third kernel, the intersector, then takes this information and

performs ray-triangle intersection tests on all triangles in said voxels. Next, the shader

 10

calculates the color resulting from each ray, using standard shading techniques. Also, the

shader is responsible for spawning secondary rays (shadow, reflection, refraction, etc).

The implementation is not of particular interest for the purpose of this project, but

the way the authors mapped traditional ray tracing to the architecture of a GPU certainly

is [8].

Another paper describing how ray tracing can be done on GPUs was written by

Carr et al. The point of interest in this paper is how the authors do some work on the

GPU and some on the CPU. This is done because both processors are good at different

things. The GPU is very efficient at performing the same operations on many sets of

data, while the CPU is good at recursion and handling complex data structures.

Therefore, the CPU handles traversing the BSP and gathering clusters of rays and

triangles to send to the GPU, and the GPU does most of the intersection tests. One of the

biggest obstacles is the slow communication between CPU and GPU, so obviously the

amount, and frequency, of data transferred is minimized as much as possible. To do this,

the authors have the CPU gather chunks of coherent rays. If there were over a certain

number of coherent rays they are sent to the GPU. Otherwise, the GPU speedup isn’t

worth the time required to send the data, so the CPU performs the intersection tests itself

[2].

There is another example of real-time ray tracing on a GPU on the Internet as

well. Here, the author creates a ray tracer in the pixel shader of an Nvidia 8800 GPU.

The scene is very basic, with 21 spheres and 1 plane. Furthermore, the ray tracer uses

ray-sphere intersection instead of the standard ray-triangle intersection to reduce the

number of ray intersection tests to 22 for the entire scene. However, the demo runs on an

 11

8800GTS with 320 MB RAM at 70 frames per second at what appears to be 800x600

resolution with reflection. While simplistic, this demo certainly shows a modern GPU

can, to some extent, perform high-quality ray tracing in real-time. [3]

 In order to create a practical real-time ray tracer, one must consider all these

factors: spatial subdivision, dynamic scenes, and parallelization. As far as the last

approach (CREMA), introducing new hardware can be difficult for a number of reasons;

primarily because consumers would much rather use the hardware they already have. Of

course, developing and producing specialized hardware is expensive and time consuming

as well. However, the basic idea of parallelizing object space instead of pixel space has

much potential, and could be useful in other approaches.

Section 4: Hypothesis

 Rasterization is the method used in games and most 3D interactive programs.

This is made possible with Graphics Processing Units (GPUs). These specialized chips’

only task is to rasterize triangles into an image using their massively parallel architecture

and efficient floating-point arithmetic capabilities. Interestingly, ray tracing is slow

primarily because of its reliance on floating-point operations, and it also lends itself

extremely well to parallelization. Thus, it is conceivable GPUs could perform ray tracing

much more efficiently than general purpose processors.

 Up until a year ago, GPUs were only capable of doing one thing: drawing

triangles; manufacturers gave them almost no flexibility. However, GPU manufacturer

Nvidia changed this with its 8000 series GPUs. Prior to this line, in order to use a GPU

fcor general computig one had to do it in a shader language such as High-Level Shader

 12

Language (HLSL). HLSL is meant for graphics applications that allow directly

modifying vertex and pixel data. So, using this for other purposes was awkward and

restricting.

The architecture of the new GPUs now resembles a general parallel processor,

and the drivers use it for graphics rendering. Thus, the hardware is driven much more by

software. Because of this, alongside its release of the 8000 GPU line, Nvidia released a

C compiler for its graphics processors called CUDA (Compute Unified Device

Architecture. This means anybody can write software that uses an Nvidia 8000 series

GPU as a general purpose CPU [5].

I plan to leverage this compiler and hardware to perform ray tracing in real-time.

Because “real-time rendering” is not a well-defined term (5 frames per second at

256x256 resolution could be called real-time), I will use three metrics to measure the

success of my system: frame rate, screen resolution, and number of objects in a scene.

To be called a useful real-time renderer these three must be balanced. For example,

rendering five objects in a scene at 100 frames per second does not constitute a usable

graphics package. A very successful result would run at around 60 frames per second at

1024x768 resolution with a hundred thousand polygons, but I will be developing a

system that maximizes all three factors as much as possible.

Section 5: Synthesis

Overview

 My system has been written in C and C++. Because a CPU is more efficient than

a GPU with certain things, some of my system runs on the CPU, while the core ray

 13

tracing operations runs on the GPU. Thankfully, Nvidia’s CUDA SDK allows for easy

cooperation with CPU and GPU. So, the GPU portion is compiled with Nvidia’s C

compiler and runs on an Nvidia CUDA-compatible graphics card, and the rest is written

in C++ and compiled with Visual Studio 2005. Also, CUDA can cooperate with

OpenGL and DirectX. Interestingly, because CUDA is still relatively new, it works with

these technologies in two different, limited ways. With DirectX, CUDA can share vertex

buffers, and with OpenGL it can share texture buffers. Because in my system, CUDA

creates an image (or texture), and that texture needs to be rendered to the screen, I take

advantage of CUDA’s OpenGL interoperability.

Two desktop computers will be used for testing: one with an 8800 Ultra and

another with 8800 GTS with 320 MB RAM.

 I have mapped traditional ray tracing algorithm to CUDA. Also, I implemented a

bounding volume hierarchy to further optimize the system. Figure 1 shows a high-level

flowchart of my system:

 14

Figure 1: The pipeline of my system.

The scene geometry is initially partitioned into a Bounding Volume Hierarchy by

the CPU. The CPU then uses this hierarchy to efficiently task the GPU to ray trace the

scene. After the frame is complete, the CPU draws the frame using OpenGL. The CPU

also checks for user input and updates the scene data (lights, camera, etc) for the next

frame. While it may appear the CPU is doing most of the work, the most

computationally expensive part is being done on the GPU.

Bounding Volume Hierarchy

 After looking into several different techniques for spatial subdivisions, I chose to

create a bounding volume hierarchy, because it seemed to be the most flexible when

applied to dynamic objects. For the bounding volume I chose spheres, for reasons

discussed later in this document.

 15

 Even though the hierarchy is created and maintained entirely on the host (CPU), it

is sent to and used by CUDA, so I needed to consider this when designing and creating

my system. Specific details on these considerations are also discussed later.

Importing geometry

 A spatial subdivision is not much good without geometry, so my system allows

importing models from files in the FBX format, which is a widely used format supported

by Maya, 3D Studio Max, Blender, and other modeling packages. To facilitate this, I

used the Autodesk FBX SDK, which provides support for reading and writing FBX files.

 FBX is a very robust format, and so is the SDK. It includes support for numerous

types of objects such as lights, bones, animation, NURBS, materials, cameras, etc.

However, for the purpose of this project, I was only interested in polygonal geometry, so

I only used features of the SDK that directly pertained to the information I wanted.

My system does not export anything to any FBX file. Therefore, when the system

initializes, it creates an FBXManager and loads all relevant data. Upon completion, the

FBXManager is destroyed and the SDK is not used again. An overview of the classes

and structures that handle importing is described below:

ImportedModel

 This class contains all relevant data from an FBX file. Since a single file can hold

an entire scene, only one is currently created in my system. However, multiple files

could be used with minimal amount of change to my system.

After the FBX manager has been initialized and the file opened, ImportedModel

goes through the scene hierarchy. In FBX files, everything (meshes, NURBS, cameras,

 16

bones, etc) is contained in a hierarchy. Since I am only interested in the scene’s

geometry, this caused an issue with dealing with all the extra information. Instead of

storing everything, I chose to extract mesh information and discard the rest. I also chose

to discard the tree information for several reasons. The main reason was while a tree

consisting entirely of meshes might be useful, in FBX files a mesh might be a child of a

bone, a bone might be a child of any other type of object, etc. Thus, trying to extract a

tree consisting only of meshes would be cumbersome. Also, every child has a global

transformation matrix and a transformation matrix relative to its parent. Skipping parents

would have invalidated a child’s relative transformation matrix, so I simply always use

global transformation matrices. This simplification is illustrated below:

Figure 2: Example of how an FBX file is stored in my system.

ImportedModel goes through the scene hierarchy and looks for mesh objects.

Whenever such an object is encountered, it creates a new Geometry object and gives it

the current node. ImportedModel resumes its search at the last node’s sibling.

 17

Geometry

 As mentioned above, ImportedModel gives Geometry a node that is a mesh.

From there, Geometry recursively finds all offspring (children, grandchildren, etc) that

are meshes and stores them as Mesh objects.

Mesh

 Mesh holds a single node’s vertex data. It does this by containing a series of

Polygon objects. Polygons contain a number of Vertex objects, and a Vertex contains

data such as x, y, z coordinates, normals, colors, etc. Mesh also contains global

transformation matrices.

The diagram below shows an example of this structure.

Figure 3: Examples of how a scene is stored in my class structure.

 18

Constructing the Bounding Volume Hierarchy

Structure BoundingVolume contains data for the hierarchy. It contains its center

position, radius, and transformation matrix. If this volume’s children are leaf nodes it

contains an array of Polygon objects; otherwise, it contains two volumes contained within

it (yielding a binary tree). A BoundingVolume does not contain both child volumes and

polygons.

ImportedModel constructs and contains a bounding volume hierarchy for each

Mesh it contains. There are no higher-level volumes, because as these objects move,

scale, or rotate, the structure of the hierarchy would need to change or become inefficient.

Instead, as a single mesh is transformed, the hierarchy containing it uses the same

transformation matrix. Thus, no hierarchies ever require restructuring.

So, ImportedModel loops over all Mesh objects, creating one volume for each. If

the number of vertices contained in one volume exceeds a certain threshold, and if the

object can be split up, the vertices are divided as evenly as possible, and a child volume is

created for both groups.

Creating the bounding volume is an interesting problem. My first impulse was to

find the average of all points, use that as the center, and use the distance to the farthest

vertex as the radius. In this example, this approach would be acceptable:

 19

However, this example yields an inefficient bounding volume:

Figure 4: Inefficient bounding volume.

Therefore, I created a very simple, yet efficient way of creating a tight volume.

To begin, I create a bounding box by finding the maximum x, y, and z coordinates and

the minimum x, y, and z coordinates. Then, the line between these two points is the

 20

sphere’s diameter, and the midpoint is the center of the sphere. With the same vertices

this method yields the following bounding volume:

Figure 4: A more efficient bounding volume.

As noted before, transforming objects can be done by modifying each Mesh’s

transformation matrix. BoundingVolume contains a pointer to its Mesh’s matrix, so the

bounding volume hierarchy is always up to date.

One last note about bounding volumes in my system: there are two primitives that

can be natively ray traced in my implementation, spheres and polygons. Incidentally,

because I chose my bounding volumes to be spheres, my hierarchy contains data

necessary to describe any combination of polygons and spheres. If there is a top-level

volume that contains no children and no polygons, my ray tracer renders the volume

itself.

Since it would have been cumbersome to export and import spheres to/from FBX

files, I created my own, very simple, file format. My system reads this text file, and the

file can tell the system to load an FBX file, as well as draw any number of spheres or

polygons.

 21

Considerations for CUDA

 First, CUDA kernels must be written in C. This is not to say, however, the entire

system must be written in C. Furthermore, the FBX SDK is written in C++. So, in my

system, most of the code that runs on the host (the computer’s main CPU) is C++ code.

This includes ImportedScene, Geomety, and Mesh.

 As previously note, the host handles the creating and updating of the hierarchy

and geometry (as well as other things, such as camera control), while the GPU only

handles the drawing of the scene. The GPU cannot directly access CPU memory, so the

host has to explicitly send all required data to the GPU. To simplify this,

BoundingVolume is a structure that contains all data required to draw a given scene.

This means I am able to use C++ data types and constructs for Geometry, Mesh, etc, but

BoundingVolume and its members are strictly C-type structs. The upshot of this is

BoundingVolume contains pointers to matrices and children. This means I need to

recursively write this data to GPU memory. To do this, I recurse down to the deepest leaf

first, copy that node to the GPU memory, use that pointer for its parent, copy the parent,

and so on.

 Another consideration is while the GPU performs all transformation operations

(matrix multiplication, translation/rotation/scale encoding and decoding) in current

graphics applications, there are no mechanisms to do these operations in CUDA.

Unfortunately, even though DirectX would have allowed easy access to the card’s matrix

operations, I had to use OpenGL for its abiltity to share textures with CUDA. Therefore,

two options were available for transforming objects. First, all matrix operations could be

 22

done on the CPU, leading to losses in overall performance. The other option was to have

the ray tracer kernel transform all objects as it encountered them. Obviously, this would

have also greatly decreased performance. In light of this, and due to the fact that my

Graduate work is going to focus on rendering performance, the objects in my scene are,

for the most part, static. The mechanisms are in place to transform objects, but most of

them are not used at this time. There is one exception to this, however. Models that are

imported from an FBX files have transformation matrices associated with them. Simply

ignoring these would yield an incorrect scene, so there is a preprocessing step that occurs.

After the scene is imported, but before the bounding volume hierarchy is created, each

object’s transformation matrix is applied to all its vertices. These new positions simply

replace the old ones.

The Ray Tracer Kernel

Overview

 CUDA programs consist of kernels that are compiled specifically for the GPU. In

my system, when the host is ready to draw another frame, it sends all required data to a

function that spawns the GPU threads and starts up the kernel. This data includes a

pointer to an OpenGL texture buffer, dimensions of the window, camera information, the

scene’s light position, a pointer to the bounding volume hierarchy, and some extra

information about the hierarchy. The GPU cannot access any host memory and vice-

versa, so all data the CPU sends is either by-value or pointers to data already in GPU

memory. While in changing scenes the CPU would send the GPU the certain scene data

every frame in order to reflect any changes, I ultimately made my system upload the

 23

scene geometry data once since objects in my scene do not move. I do, however send

things like camera position/orientation, etc. every frame.

 The spawning function then forwards this data to the kernel, while also

determining how to divide the work on the GPU. This is done on every CUDA program

by splitting the work into grids, and splitting grids into threads. My implementation uses

ray packets (each thread computes a block of pixels), so the spawning function figures

out how many grids and threads to spawn based on customizable parameters (packet size,

screen size, etc). I use ray packets to decrease the number of threads that attempt to

access the same memory location at one time (memory issues are discussed in further

detail later in this document. Of course, this does not solve the memory access issues,

but it does seem to help. The packet size is also easily configurable to allow

experimenting to see how different sizes affect the performance of different scenes. On

average, 4x4 packets seem to work the best.

 Threads in a CUDA kernel always have access to which grid they belong to and

where they are in the grid, so they can easily decide which pixel(s) they should compute.

The ray tracer algorithm can then be performed on each thread.

Recursion

There is no recursion in CUDA. This posed an interesting problem, as the basic

ray tracing algorithm is inherently recursive. Moreover, my bounding volume hierarchy

is a tree, which is also usually traversed recursively. Creating the hierarchy wasn’t a

problem since it is created on the host, and thus could be done recursively, but an

iterative solution was required for on CUDA. Interestingly, the solutions for both

traversing the hierarchy and recursive ray tracing were very similar.

 24

In both solutions I maintain an array of current objects and an array of “next”

objects. For the hierarchy these objects are volumes, and for the ray tracing these objects

are rays. So, the “current” hierarchy and ray arrays are initialized to contain the top-level

volumes and the single ray spawned from the camera, respectively. Then, in every

iteration, the “next” arrays are filled with child volumes whose parents were intersected

and any necessary secondary rays. After each iteration the “next” array is moved to the

“current” one and is emptied. For the hierarchy, iteration stops when the “current” array

is empty. When ray tracing, the iterations stop when there are no more “next” rays or the

number of iterations has reached a specified limit.

This iterative approach works well on CUDA, except for one other drawback.

CUDA cannot dynamically allocate memory from within the kernel, so the arrays

described above must be of fixed size. This means a maximum size had to be chosen and

the arrays are always given this size. Of course, this means excessive memory could be

allocate which will decrease performance, or not enough memory could be allocated

which will cause the kernel to crash. This maximum size could be modified to allow for

larger scenes, however.

Ray tracer operations

 GPUs are still primarily used for rendering graphics, so they have many vector

operations (dot product, cross-product, normalization, etc) implemented in hardware.

CUDA provides native 2-, 3-, and 4D vector types, but the necessary vector operations

are not available, which probably could have improved performance, since I wrote them

all in software.

 25

 Aside from vector operations, the other main features of my kernel are the ray-

sphere and ray-polygon intersection tests. The ray-sphere intersection test is the same as

any other implementation, but the ray-polygon test is not as common. To begin, the

polygon in question is “projected” to a 2D axis-aligned plane. This projection is not done

by rotating the polygon; rather, the dominant component in the normal is simply

discarded. So, if a polygon has a normal of (.1, .1, .9), the polygon is projected on the

xy-plane by ignoring each vertex’s z-component. Next, the polygon and intersection

point are translated such that the intersection point is on the origin. For each edge on the

polygon, it is tested whether it intersects a given positive axis. If the number of these

intersections is even, the point lies outside the polygon; otherwise it is inside [7]. This

algorithm has some advantages over others, such as it does not require any trigonometric

operations and it works on both convex and non-convex polygons.

Figure 5: Process of determining if a point is inside a given polygon.

Memory Access

 26

 The 8000 GPUs have extremely powerful and parallel architectures. However, to

be as powerful as they are, they have to be somewhat specialized in the types of

applications they are efficient at (otherwise they could be used as a CPU!). One of the

main things CUDA kernels need to have to effectively use the full capabilities of the

architecture is coalesced memory. The basic idea of coalesced memory is every global

memory access should be coalesced into one contiguous request, and every thread should

request different memory locations. For example, if an array is being processed, thread 0

should read element 0, thread 1 should access element 1, and so on. This concept is best

depicted in the CUDA Programming Guide [5]:

 27

Figure 6: Left: Coalesced memory access. Right: Non-sequential non-coalesced

memory access.

Unfortunately, ray tracing relies on random access memory, because each thread

needs to access all scene data a number of times throughout the algorithm. This certainly

degrades a ray tracer’s performance when done on CUDA.

Branching

 Another limiting factor in CUDA is branching. If two threads diverge, they are

executed serially instead of in parallel, which obviously causes a significant decrease in

performance. Again, there is much branching in ray tracing, because of different object

intersections, spawning reflection/refraction rays, shadows, etc. This is a fundamental

characteristic of the ray tracing algorithm, so this is another reason it performs less than

ideally on CUDA.

Section 6: Results

Each benchmark was run on two machines:

Processor AMD ATHLON 64 X2
5200 @ 2.6 GHz

Intel Core 2 Duo E6600 @
2.4 GHz

System RAM 4 GB 2 GB

GPU Nvidia 8800 GTS Nvidia 8800 GTX

Graphics RAM 320 MB 768 MB

In Addition, CUDA allows the kernel to run in “emulation” mode, which means it runs

on the CPU, and the GPU is not utilized. This allows for a good measurement of the

speed-up obtained from the GPU. So, tests were conducted in both emulation mode and

“normal” mode. All objects in the following tests are either reflective or transparent.

 28

Using smaller resolutions yield linear speedups, so I have used the same resolution on all

the following tests.

Test 1:

Test 1 (2 Triangles, 0 Spheres)

28.24

19.55

17.86

17.72

34.2

23.43

21.45

21.48

0.32

0.25

0.24

0.24

0.47

0.37

0.35

0.35

0 5 10 15 20 25 30 35 40

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 29

Test 2:

Test 2 (0 Triangles, 2 Spheres)

54.9

36.1

34.4

33.8

82.83

54.09

50.9

50.75

0.44

0.37

0.36

0.35

0.62

0.52

0.5

0.5

0 20 40 60 80 100

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 30

Test 3:

Test 3 (1 Triangle, 2 Spheres)

25.6

18.6

16.65

15.85

32

21.38

19.68

19.29

0.3

0.23

0.21

0.21

0.42

0.32

0.29

0.3

0 5 10 15 20 25 30 35

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 31

Test 4:

Test 4 (35 Triangles, 0 Spheres)

11.11

8.4

8.22

8.2

12

9.4

9.24

9.2

0.14

0.12

0.11

0.11

0.19

0.16

0.16

0.16

0 2 4 6 8 10 12 14

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 32

Test 5:

Test 5 (0 Triangles, 36 Spheres)

5

3.15

2.55

2.13

5.92

3.84

3.28

3

0.08

0.06

0.05

0.05

0.11

0.07

0.06

0.065

0 1 2 3 4 5 6 7

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 33

Test 6:

Test 6 (2406 Triangles, 0 Spheres)

0.22

0.14

0.12

0.1

0.25

0.153

0.144

0.134

0.003

0.0022

0.0021

0.002

0.00525

0.00337

0.00322

0.00318

0 0.05 0.1 0.15 0.2 0.25 0.3

1 Step

2 Steps

3 Steps

4 Steps

M
ax

 R
ef

le
ct

io
n

/R
ef

ra
ct

io
n

 I
te

ra
ti

o
n

s

Frames Per Second

Core 2 Duo

Athlon 64 X2

8800 GTX

8800 GTS

 The relative performance results are not surprising. The 8800 GTX has more

memory, higher clock speeds, etc. than the GTS, so it should achieve higher frame rates.

Likewise, GPUs’ architectures are much more parallel than CPUs, so they should

 34

perform much better. Last, Intel’s Core 2 Duo line generally performs faster than Athlon

64s.

 One may be confused as to why the scene with two spheres ran so much faster

than the one with two triangles when the performance of 35 polygons was better than 36

spheres. This is because my system always inserts all polygons into bounding volumes.

Therefore, two triangles actually require a maximum of four intersection tests: two

spheres and two polygons.

Section 6: Conclusions

 Nvidia’s 8800 graphics cards are extremely powerful, and CUDA allows

programmers to develop software that uses these highly parallel architectures for general

computing. The potential performance of floating-point arithmetic on these cards is truly

impressive. However, not every problem is a good candidate for being solved with

CUDA. The first and most important requirement is the problem should be massively

parallelizable. Second, the solution to the problem should follow certain memory

patterns. And last, branching should minimalized as much as possible.

 Ray tracing requires millions of floating-point operations per second, and is also

extremely parallelizable. On the other hand, it requires much random access memory and

branching. Thus, ray tracing on CUDA can be done in real-time, but only on a very small

scale. My system can ray trace a scene with only a handful of objects before its frame

rate drops to undesirable levels. Once again, I believe the 8800 GPUs have enough

computing power for ray tracing, but the memory accesses and branching are the limiting

factors.

 35

 That being said, an interesting fact has been observed. On the demo programs

that ship with CUDA, the GPU shows 16-300 times the performance as CPUs running

the same programs in emulation mode. My system shows the GPU being about 70-100

times faster than a CPU, which is close to the gain CUDA gives to other applications,

even though CUDA is not perfectly suited for ray tracing. This suggests another possible

application to my system: rendering farms. Instead of using CUDA for real-time ray

tracing it could be used to simply do it faster than current systems. Rendering a frame in

1/80th the time could be extremely valuable for film studios that rely on large rendering

farms to produce their images.

Section 7: Future Work

 There are numerous modifications or additions that could be made to this project.

First, it would be interesting to investigate how other primitives such as cylinders, cubes,

cones, torii, etc. perform when compared to spheres and polygons. Furthermore, NURBS

can represent objects that are just as complex as those made of polygons, and since they

would require fewer memory accesses, it would be extremely interesting to extend my

system to accept any arbitrary NURBS or similarly-defined object. Another possible

path would be to investigate how other spatial subdivisions (kd-trees, bsp-trees, etc)

perform, as well as how other kinds of volumes for a bounding volume hierarchy affect

performance. Of course, future releases of CUDA may include native matrix or vector

operations, so utilizing these functions may yield performance gains. Last, seeing how

multiple GPUs in SLI improve performance could be beneficial as well.

 36

 Aside from improving the performance of the system, some other features would

also be quite interesting. Because the hardware is designed for graphics after all, and

because CUDA cooperates with OpenGl and DirectX, using the pixel/fragment shaders

for post-processing is a possibility as well. Effects like tone reproduction could be

implemented in a shader after CUDA finishes tracing the scene.

Appendix A: Installing and configuring necessary software for project

on Windows XP and Visual Studio 2005:

Nvidia CUDA:

Download and install three files from

http://www.nvidia.com/object/cuda_get.html#windows:

• 169.21_forceware_winxp_32bit_english_whql.exe

• NVIDIA_CUDA_Toolkit_1.1_x86.exe

• NVIDIA_CUDA_SDK_1.1_x86.exe

Autodesk FBX SDK:

Download fbx200611_1_fbxsdk_win_enu.exe from

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6839916

Running my Project:

Note: These steps assume the above installations were performed with the default

options. If not, the paths for the FBX SDK and CUDA may require changing in Visual

Studio.

 37

• Copy my (unzipped) project directory to C:\Program Files\NVIDIA

Corporation\NVIDIA CUDA SDK\projects\raytracer, such that raytracer.sln is

immediately contained in this directory.

• Open ratracer.sln in MS Visual Studio 2005.

• Build solution.

• If everything compiles and links, run project. Otherwise, refer to

“troubleshooting” below.

Controls:

• Arrow keys move the camera in the X and Z direction

• I, K Adjusts camera pitch

• O, P Adjusts camera yaw

• W, S, A, D move the light source in the X and Z direction

• F prints the current frame rate to the console

• 1-9 displays respective levels of bounding volume hierarchy. 0 displays the

bottom level.

Troubleshooting

• >LINK : fatal error LNK1181: cannot open input file 'fbxsdk_mt2005d.lib'

o You may need to include the FBX “lib” directory in Visual Studio.

� In VS, go to Tools -->options

� Under Projects and Settings, click VC++ directories

� Select Library Files from the “show directories for” drop-down

 38

� Add C:\Program Files\Autodesk\FBX\FbxSdk\2006.11.1\lib to the

list.

• >C:\Program

Files\Autodesk\FBX\FbxSdk\2006.11.1\include\kfcurve /kfcurvenode.h(1056) : fatal

error C1083: Cannot open include file: 'kfcurve/kfc urvenodeinhouse.h': No such

file or directory

o Double-click the error. This should open the .h file with the error.

Comment out line 1056.

o Rebuilding will give 329 warnings, but the program will run fine.

Unfortunately, no other reliable fix has been found that does not yield

these warnings.

For more accurate performance statistics, disable Vertical Sync:

• Open Nvidia Control Panel

• Click “Manage 3D Settings”

• In the “Global Settings” tab, select “Force off” for the “Vertical Sync”

feature

 39

References

 [1]Binary Space Partitioning. 8 October 2007. Retrieved 20 October 2007 from

site: http://en.wikipedia.org/wiki/BSP_tree.

 [2] Carr, N. A., Hall, J. D., and Hart, J. C. 2002. The ray engine. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware

(Saarbrucken, Germany, September 01 - 02, 2002). SIGGRAPH/EUROGRAPHICS

Conference On Graphics Hardware. Eurographics Association, Aire-la-Ville,

Switzerland, 37-46.

 [3] Hardware RayTracing Demo for IrrSpintz – nVidia 8800. 26 May 2007

Retrieved 21 October 2007, from site: http://sio2.g0dsoft.com/modules/wmpdownloads/ .

[4]Kd-tree. 17 October 2007. Retrieved 20 October 2007 from site:

http://en.wikipedia.org/wiki/Kd-tree.

[5] Nvidia. NVIDIA CUDA Complete Unified Device. Version 1.1.

Programming Guide. 29 November 2007.

 [6]Ochsenfahrt, Ulf; Salomon, Ralf, "CREMA: A Parallel Hardware Raytracing

Machine," Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on ,

vol., no., pp.769-772, 27-30 May 2007.

 [7] Owen, Scott. Ray – Polygon Intersection. 2 June 1999. Retrieved 14 April

2008 from site:

http://www.siggraph.org/education/materials/HyperGraph/raytrace/raypolygon_intersecti

on.htm.

 [8] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. 2002. Ray tracing on

programmable graphics hardware. In Proceedings of the 29th Annual Conference on

 40

Computer Graphics and interactive Techniques (San Antonio, Texas, July 23 - 26, 2002).

SIGGRAPH '02. ACM, New York, NY, 703-712. DOI=

http://doi.acm.org/10.1145/566570.566640.

 [9]Scene Graph. 8 September 2007. Retrieved 20 October 2007 from site:

http://en.wikipedia.org/wiki/Bounding_volume_hierarchies.

[10]Wald, I. 2005. Handling dynamic scenes. In ACM SIGGRAPH 2005 Courses

(Los Angeles, California, July 31 - August 04, 2005). J. Fujii, Ed. SIGGRAPH '05. ACM

Press, New York, NY, 14. DOI= http://doi.acm.org/10.1145/1198555.1198753.

[11]Wald, I., Boulos, S., and Shirley, P. 2007. Ray tracing deformable scenes

using dynamic bounding volume hierarchies. ACM Trans. Graph. 26, 1 (Jan. 2007), 6.

DOI= http://doi.acm.org/10.1145/1189762.1206075.

 [12] Woop, Sven, Schmittler, Jorg, and Slusallek, Philipp. “RPU: A

Programmable Ray Processing Unit for Realtime Ray Tracing,” Proceedings of ACM

SIGGRAPH 2005. July 2005. DOI=http://www.saarcor.de/.

